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Abstract

A family of new beam finite elements for geometrically and materially non-linear static analysis of reinforced

concrete planar frames is derived, in which strain measures are the only interpolated unknowns, and where the con-

stitutive and equilibrium internal forces are equal at integration points. The strain-localization caused by the strain-

softening at cross-sections is resolved by the introduction of a ‘short constant-strain element’. Comparisons between

numerical and experimental results on planar frames in pre- and post-critical states show both good accuracy and

computational efficiency of the present formulation.
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1. Introduction

Since it was reinforced by steel bars more than a century ago, concrete has been a very suitable con-

structional material, and reinforced concrete structures have played an important role in the built envi-

ronment. For obvious reasons, computational models for the everyday structural analysis of reinforced

concrete structures were simple and conservative at first. Nowadays, when the capabilities of the

mechanical modelling are much larger, an engineer can perform analyses which give considerably better
predictions of stresses, displacements, limit loads and mechanisms of the damage and the destruction. There

are, however, several problems that still need to be solved if we want to predict the behaviour of reinforced

concrete structures even more reliably and with a greater precision. One such problem is the softening of

concrete and its effect on the mechanical response of structures.

The accuracy of the non-linear analysis of a reinforced concrete structure largely depends on how we

model concrete, steel, and their mutual interaction, and which method of the discretization we use. The

behaviour of concrete and steel under various loading conditions has been experimentally studied for long
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and is well described; the mathematical description of the concrete behaviour, on the other hand, is still not

sufficiently developed (see Contrafatto and Cuomo, 2002 and Grassel et al., 2002, among others, for their

new constitutive models and comments on their behaviour). A number of discretization methods have so

far been proposed, many of them with the particular emphasis on the effect of softening of concrete on the
global (often softening) response of the structure (see Chen et al., 2000; Peerlings et al., 2002; or Wells and

Sluys, 2000).

Engineering structures are often composed of beams, plates and shells, and have complicated geomet-

rical shapes. At the present state of the computer hardware, the full 3D non-linear structural analysis of

structures is very limited (Khaloo and Tariverdilo, 2002). That is why we usually employ 1D (beam) and 2D

(plate and shell) finite elements in the structural analysis and why the research to improve 1D and 2D finite

elements is still continuing.

One of the essential steps in the beam modelling is the way material is considered. There are two choices
available. We can either assume the constitutive equations of the cross-section, which relate its stress-

resultants to cross-sectional deformation variables (Simo et al., 1984; Kwak and Kim, 2002)––the appli-

cability of this kind of constitutive equations is simple if rather limited, or we can assume the constitutive

equations of a fibre, which relate its stress and strain. While the latter is a much more accurate approach,

making it possible to include various material phenomena, it is computationally more demanding as it

needs the integration of stresses and material moduli across the cross-section at each Gaussian point of an

element and at each Newton’s iteration.

The topic of the strain-softening in brittle heterogeneous materials has been widely discussed for years,
see, e.g. Ba�zant et al. (1987a,b) and Maier and Perego (1992), particularly with regard to the deduction of

efficient numerical procedures (Ba�zant and Mazars, 1990). In the context of concrete frame-like structures,

two approaches have been suggested. The most important assumption of the first one is that the strain-

softening triggers the point-wise strain localization (a ‘plastic hinge’); once the hinge emerges, its sub-

sequent behaviour is governed by the moment–rotation law obtained experimentally (Jir�asek, 1997). This
model is simple to use and independent of the finite-element mesh, but it disregards the effect of extensional

strain and is thus convenient only for a certain class of problems. The second approach is based on

experimental evidence that the softening of material develops on a finite-length region of a concrete beam
(Ba�zant et al., 1987a,b). The present paper follows the second approach.

The literature on geometrically linear–materially non-linear analysis of reinforced concrete frames is

extensive, see, e.g. the works by Ba�zant et al. (1987a,b), Kim and Lee (1992), Lazaro and Richards (1973),

P€ottier and Swoboda (1987), Darvall and Mendis (1985), or Rasheed and Dinno (1994), among many, and

the references therein. In contrast, a lot less publications can be found which consider both geometric and

material non-linearity, see, e.g. the paper by El-Metwally et al. (1990) on the stability of a reinforced

concrete column, or Carol and Murcia (1989), Gunnin et al. (1977), and Mendis and Darvall (1988).

In the present paper we deal with the fibre-based constitutive equations of concrete and steel, and
employ standard non-linear material laws, as used in design, but disregard the phenomena such as creep

and shrinkage of concrete. Our main goal is to show a new approach to the strain-softening analysis

of reinforced concrete frame-like structures. We derive a family of new beam finite elements for

the geometrically and materially non-linear static analysis of reinforced concrete planar frames. The

kinematically exact beam theory according to Reissner (1972) is employed as a theoretical basis of our

finite-element formulation. There are two original contributions in our finite elements: (i) strains are the

only interpolated unknowns; (ii) the constitutive and equilibrium internal forces are enforced to be equal

at integration points. While one of the consequences of the former is the absence of locking, the latter
assures the equality of the bearing capacity of the chosen cross-sections and their stress-resultants due to

the imposed loading.

While the effect of shear strain is considered in our theoretical deductions, it is disregarded in our

numerical examples. The reinforcing steel bars are modelled as steel layers within a generally inhomo-
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geneous, layered, rigid cross-section where the conformity of axial strains in concrete and in steel layers at

the contact is assumed. The behaviour of concrete in compression and tension is modelled and analysed by

the constitutive laws of Eurocode 2 (1999) and Desayi and Krishnan (1964). Both models exhibit the strain-

softening in compression. The behaviour of steel reinforcing bars is assumed to be elasto-plastic with a
strain-softening branch. What regards the strain-softening and strain-localization, the essential step in our

formulation is the introduction of a ‘short constant-strain element’ (as was in the context of the geomet-

rically linear theory suggested by Ba�zant et al., 1987a; Darvall and Mendis, 1985; Kim and Lee, 1992;

Coleman and Spacone, 2001).
2. Formulation of the non-linear planar beam model

2.1. Kinematic relations

We consider a planar beam of initial, undeformed length L, and constant reinforced concrete cross-

section A. The deformed configuration of the beam is described by a planar curve––the line of centroids of

the concrete section, and by the family of its cross-sections. The relative position of a centroidal particle

with respect to the curve is identified by the material coordinate, x 2 ½0; L�. Its absolute position with respect
to the spatial Cartesian coordinate system with coordinates X , Y , Z, and unit base vectors EX , EY , EZ , is

given by vector R0ðxÞ. The cross-sectional plane at x is identified by the unit vector exðxÞ perpendicular to
the cross-section, and by the in-plane unit vectors eyðxÞ and ezðxÞ with eyðxÞ ¼ EY . Vectors exðxÞ, eyðxÞ, ezðxÞ
constitute the basis of material coordinate system with material coordinates x, y, z. An arbitrary particle of

the cross-sectional plane at x is identified by a pair of material coordinates, ðy; zÞ 2 A. An arbitrary particle

of the beam is identified by a trio of coordinates, ðx; y; zÞ 2 L� A. The deformed position of particle ðx; y; zÞ
with respect to the spatial coordinate system is given by
Rðx; y; zÞ ¼ R0ðxÞ þ yeyðxÞ þ zezðxÞ ¼ X ðx; y; zÞEX þ Y ðx; y; zÞEY þ Zðx; y; zÞEZ : ð1Þ

We assume that the geometrical shape of the cross-section and the distribution of material (i.e. concrete

and steel) are symmetric with respect to the plane of deformation, ðX ; ZÞ. For the simplicity of derivation,
we assume that the beam in the undeformed configuration is straight and lies on X -axis of the spatial

coordinate system so that the spatial and material coordinates coincide initially: X ¼ x, Y ¼ y, Z ¼ z, and
EX ¼ e0x , EY ¼ e0y , EZ ¼ e0z . Consequently, in the undeformed configuration, Eq. (1) is reduced to
rðx; y; zÞ ¼ r0ðxÞ þ ye0yðxÞ þ ze0z ðxÞ ¼ xEX þ yEY þ zEZ ; ð2Þ
where r0 ¼ xEX and r are position vectors of centroidal particle ðx; 0; 0Þ and particle ðx; y; zÞ, respectively,
and e0y and e0z are the undeformed material base vectors. By introducing the displacement vector of the

centroidal axis, u ¼ R0 	 r0 ¼ uEX þ vEY þ wEZ , and the condition v ¼ 0 for the planar motion of the
beam into Eq. (1), we obtain (see Fig. 1)
Rðx; y; zÞ ¼ R0ðxÞ þ yeyðxÞ þ zezðxÞ ¼ ðxþ uðxÞÞEX þ wðxÞEZ þ yeyðxÞ þ zezðxÞ; ð3Þ

where u and w are the components of the displacement vector with respect to the spatial basis. They are

related to the strain measures e, c, and j by the kinematic equations (Reissner, 1972)
1þ u0ðxÞ 	 ð1þ eðxÞÞ cosuðxÞ 	 cðxÞ sinuðxÞ ¼ 0; ð4Þ

w0ðxÞ þ ð1þ eðxÞÞ sinuðxÞ 	 cðxÞ cosuðxÞ ¼ 0; ð5Þ

u0ðxÞ 	 jðxÞ ¼ 0: ð6Þ



Fig. 1. Deformed and undeformed configurations of the beam.

7184 S. Bratina et al. / International Journal of Solids and Structures 41 (2004) 7181–7207
Here, eðxÞ > 	1 is extensional strain of the axis; cðxÞ is its shear strain; jðxÞ is bending strain, closely related
to the curvature of the axis (Vratanar and Saje, 1998); and uðxÞ is the rotation of the cross-section (Fig. 1).

In (4)–(6), the prime (0) denotes the derivative with respect to x. As no bounds on the displacements and the
rotation are set, the assumed kinematics is usually marked as kinematically or geometrically exact. e, c, and
j are deformation variables, while u;w, and u are termed kinematic variables.

The extensional strain of an arbitrary particle ðx; y; zÞ will be denoted by Dðx; y; zÞ. It is a linear function
of z
Dðx; y; zÞ ¼ eðxÞ þ zjðxÞ; ð7Þ
which is the implication of the assumed Bernoulli hypothesis. It is clear from Eq. (7) that D depends on x
and z only. Hence, the notation Dðx; zÞ will be used.

2.2. Equilibrium equations

The equilibrium equations of the beam consist of three scalar differential equations of the first order

(Saje, 1990)
R0
1ðxÞ þ pX ðxÞ ¼ 0; ð8Þ

R0
2ðxÞ þ pZðxÞ ¼ 0; ð9Þ

M0ðxÞ þ ð1þ u0ðxÞÞR2ðxÞ 	 w0ðxÞR1ðxÞ þ mY ðxÞ ¼ 0; ð10Þ
for the three components R1ðxÞ, R2ðxÞ, and MðxÞ of the cross-sectional stress-resultants,

NðxÞ ¼ R1ðxÞEX þR2ðxÞEZ and MðxÞ ¼ MðxÞEY . In Eqs. (8)–(10), pX ðxÞ, pZðxÞ, and mY ðxÞ are the external
distributed force and moment loads per unit of undeformed centroidal axis in the X , Z, and Y directions,

respectively. The stress-resultant N can also be expressed in the material basis, i.e. NðxÞ ¼ NðxÞex þ QðxÞez.
Its components, N and Q, are axial and shear forces of the cross-section. They are related to R1 and R2 by
(Saje, 1990)
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N ¼ R1 cosu 	R2 sinu; ð11Þ

Q ¼ R1 sinu þR2 cosu: ð12Þ

N, Q, and M are called the equilibrium axial and shear force, and the equilibrium bending

moment, respectively, in contrast to the constitutive forces and moment, which will be defined in the next

section.

2.3. Constitutive relations

The constitutive relations between the extensional strain, D ¼ e þ zj, and the normal stress, r, and the

shear strain, c, and the shear stress, s, are assumed to be given by the formal relations
r ¼ FðDÞ; ð13Þ

s ¼ GðcÞ: ð14Þ

FunctionsFðDÞ and GðcÞ are chosen according to a specific material to be modelled. In reinforced concrete
beams, the effect of shear is usually small compared to the effects of bending, compression and tension, and

is hard to be described mathematically. We will assume a simple linear constitutive equation GðcÞ ¼ Gc,
where G is shear modulus of material. The integration of stresses over the cross-section yields the so called
constitutive axial and shear forces and the constitutive moment:
Ncðe; jÞ ¼
Z
A

rdA ¼
Z
A
FðDÞdA; ð15Þ

QcðcÞ ¼
Z
A

sdA ¼
Z
A
GðcÞdA ¼ GAscðxÞ; ð16Þ

Mcðe; jÞ ¼
Z
A
zrdA ¼

Z
A
zFðDÞdA: ð17Þ
As < A is the shear area of the cross-section (Cowper, 1966). The equilibrium requires the constitutive and
equilibrium forces and moments at cross-sections to be equal, Nc ¼ N, Qc ¼ Q, and Mc ¼ M, or

equivalently,
NcðeðxÞ; jðxÞÞ 	NðxÞ ¼ 0; ð18Þ

QcðcðxÞÞ 	 QðxÞ ¼ 0; ð19Þ

McðeðxÞ; jðxÞÞ 	MðxÞ ¼ 0: ð20Þ

In the application of Newton’s method for the solution of discrete equations of the beam, we need the

variations of Nc, Qc, and Mc with respect to e, c, and j. Varying Eqs. (15)–(17) yields
dNc ¼
Z
A

or
oD

dA
� �

de þ
Z
A
z
or
oD

dA
� �

dj ¼ C11 de þ C13 dj; ð21Þ

dQc ¼
Z
A

os
oc
dA

� �
dc ¼ C22 dc; ð22Þ

dMc ¼
Z
A
z
or
oD

dA
� �

de þ
Z
A
z2

or
oD

dA
� �

dj ¼ C31 de þ C33 dj: ð23Þ
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Functions C11ðxÞ, C13ðxÞ ¼ C31ðxÞ, C33ðxÞ, and C22ðxÞ ¼ GðxÞAs are the components of the tangent consti-

tutive matrix of the cross-section, CðxÞ. They depend on the distribution of the tangent material moduli over

the cross-section, and on its geometrical shape. For stable materials, C has to be positive definite for any x,
i.e., its principal minors must be positive:
C11 > 0; C11C22 > 0; detC ¼ C22ðC11C33 	 C2
13Þ > 0: ð24Þ
As soon as one of the conditions (24) is violated, the material instability takes place in the cross-section.

Materials, which do not fulfil the conditions in Eq. (24), are unstable materials. Concrete, when strained in

the strain-softening regime, is unstable material.

2.4. Principle of virtual work

The principle of virtual work states that the difference of virtual work of the internal and the external

forces is zero (e.g. Reissner, 1972; Saje, 1990)
Z L

0

Ndeð þ Qdc þMdjÞdx	
Z L

0

pXduð þ pZ dwþ mY duÞdx	
X6
i¼1
Si dui ¼ 0: ð25Þ
In Eq. (25) du, dw, and du denote virtual displacements and rotation, de, dc, and dj are virtual strains, and

dui (i ¼ 1; 2; . . . ; 6) are virtual boundary displacements and rotations at end points of the beam:
du1 ¼ duð0Þ; du2 ¼ dwð0Þ; du3 ¼ duð0Þ; du4 ¼ duðLÞ; du5 ¼ dwðLÞ; du6 ¼ duðLÞ:
Si (i ¼ 1; 2; . . . ; 6) are their work-complementary generalized boundary external loads.
3. Finite element approximation and solution procedure

3.1. Modified principle of virtual work

We assume that Eqs. (18)–(20) are identically satisfied. Then N, Q, and M can be replaced by Nc, Qc,

and Mc and the principle of virtual work expressed in Eq. (25) takes the form
Z L

0

Nc deð þ Qc dc þMc djÞdx	
Z L

0

pX duð þ pZ dwþ mY duÞdx	
X6
i¼1
Si dui ¼ 0: ð26Þ
The principle of virtual work assumes that the deformation and kinematic variables identically satisfy the

kinematic equations (4)–(6). This means that only three out of six variables, u, w, u, e, c, and j, are
independent. Often the three of them ðu;w;uÞ are taken as independent. Then the functional in (26) be-
comes the function of three independent functions, u, w, and u. Such formulations are used, among others,

by Bathe (1996), Crisfield (1991), or Stolarski and Belytschko (1983). These formulations are prone to

locking unless the reduced numerical integration is used. In the present paper, we follow a different

approach by introducing a modified principle of virtual work, and derive finite elements in which the

extensional strain, eðxÞ, and the bending strain, jðxÞ, are the only independent functions.

The principle of virtual work (26) is considered as the constrained variational principle in which the

kinematic equations (4)–(6) play the role of constraints. According to the constrained minimization

methodology, we introduce three Lagrangian multipliers R1ðxÞ, R2ðxÞ, and MðxÞ, by which the con-
straining equations are multiplied and then integrated over the domain ½0; L�. The resulting equations are

varied with respect to now independent functions u, w, u, e, c, j, R1, R2, and M. Integrals
R L
0
R1du0dx,
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R L
0
R2dw0dx and

R L
0
Mdu0dx are integrated by parts. The equations thus derived are added to the principle

(26). After rearranging terms we obtain an extended principle of virtual work:
Z L

0

ððNc 	NÞde þ ðQc 	 QÞdc þ ðMc 	MÞdjÞdx	
Z L

0

ððpX þR0
1Þdu	 ðpZ þR0

2Þdw

	 ðM0 	 ð1þ eÞQþ cNþ mY ÞduÞdxþ
Z L

0

ð1þ u0 	 ð1þ eÞ cosu 	 c sinuÞdR1 dx

þ
Z L

0

w0�
þ ð1þ eÞ sinu 	 c cosu

�
dR2 dxþ

Z L

0

ðu0 	 jÞdMdx	 ðS1 þR1ð0ÞÞdu1

	 ðS2 þR2ð0ÞÞdu2 	 ðS3 þMð0ÞÞdu3 	 ðS4 	R1ðLÞÞdu4 	 ðS5 	R2ðLÞÞdu5 	 ðS6 	MðLÞÞdu6 ¼ 0:

ð27Þ
In Eq. (27) the variations de, dc, dj, du, dw, du, dR1, dR2, and dM are arbitrary independent functions,

while the variations du1 ¼ duð0Þ, du2 ¼ dwð0Þ, du3 ¼ duð0Þ, du4 ¼ duðLÞ, du5 ¼ dwðLÞ, and du6 ¼ duðLÞ are
arbitrary independent parameters. In accordance with the fundamental lemma of the calculus of variations,

the coefficients at the independent variations should be zero, which gives the Euler–Lagrange equations of

the principle. They are the constitutive equations (18)–(20), the kinematic equations (4)–(6), and the

equilibrium equations (8)–(10). The related natural (or static) and essential (or kinematic) boundary

conditions are:
S1 þR1ð0Þ ¼ 0 or uð0Þ ¼ u1; ð28Þ

S2 þR2ð0Þ ¼ 0 or wð0Þ ¼ u2; ð29Þ

S3 þMð0Þ ¼ 0 or uð0Þ ¼ u3; ð30Þ

S4 	R1ðLÞ ¼ 0 or uðLÞ ¼ u4; ð31Þ

S5 	R2ðLÞ ¼ 0 or wðLÞ ¼ u5; ð32Þ

S6 	MðLÞ ¼ 0 or uðLÞ ¼ u6: ð33Þ
For a given loading factor, k, the Euler–Lagrange equations constitute a system of nine non-linear

algebraic–differential equations for nine unknown functions eðxÞ, cðxÞ, jðxÞ, uðxÞ, wðxÞ, uðxÞ, R1ðxÞ, R2ðxÞ,
and MðxÞ, subject to the set of boundary conditions (28)–(33). In order to minimize the number

of unknown functions in our final variational principle, some of these equations are integrated sepa-

rately.

The integration of Eqs. (4)–(6) yields
uðxÞ ¼ uð0Þ þ
Z x

0

ðð1þ eÞ cosu þ c sinuÞdn 	 x; ð34Þ

wðxÞ ¼ wð0Þ 	
Z x

0

ðð1þ eÞ sinu 	 c cosuÞdn; ð35Þ

uðxÞ ¼ uð0Þ þ
Z x

0

jdn: ð36Þ
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It is clear from these equations that while uð0Þ;wð0Þ;uð0Þ can be arbitrary, parameters uðLÞ;wðLÞ;uðLÞ
cannot meet arbitrary boundary conditions at x ¼ L, unless eðxÞ, cðxÞ, and jðxÞ explicitly satisfy the con-

ditions
uðLÞ ¼ uð0Þ þ
Z L

0

ðð1þ eÞ cosu þ c sinuÞdx	 L; ð37Þ

wðLÞ ¼ wð0Þ 	
Z L

0

ðð1þ eÞ sinu 	 c cosuÞdx; ð38Þ

uðLÞ ¼ uð0Þ þ
Z L

0

jdx: ð39Þ
The integration of Eqs. (8)–(10) gives
R1ðxÞ ¼ R1ð0Þ 	
Z x

0

pX dn; ð40Þ

R2ðxÞ ¼ R2ð0Þ 	
Z x

0

pZ dn; ð41Þ

MðxÞ ¼ Mð0Þ þ
Z x

0

ðð1þ eÞQ	 cN	 mY Þdn: ð42Þ
Similarly, it is clear that while R1ð0Þ, R2ð0Þ, and Mð0Þ can fulfil any natural boundary conditions at x ¼ 0,

multipliers R1ðLÞ, R2ðLÞ, and MðLÞ cannot, because they depend on the given deformation variables eðxÞ,
cðxÞ, and jðxÞ. Therefore, in order to meet the prescribed natural boundary conditions at x ¼ L, we must
explicitly require that
R1ðLÞ ¼ R1ð0Þ 	
Z L

0

pX dx; ð43Þ

R2ðLÞ ¼ R2ð0Þ 	
Z L

0

pZ dx; ð44Þ

MðLÞ ¼ Mð0Þ þ
Z L

0

ðð1þ eÞQ	 cN	 mY Þdx: ð45Þ
Eqs. (34)–(36) and (40)–(42) make it possible for the kinematic and static variables to be expressed with the

deformation variables. When these relations are inserted into the extended principle of virtual work, Eq.
(27), the terms multiplied by du, dw, du, dR1, dR2, and dM vanish. Once Eqs. (43)–(45) are considered in

the principle (27), Eqs. (37)–(39) added and the terms rearranged, we obtain the principle which depends

solely on the deformation functions, eðxÞ, cðxÞ, jðxÞ.
This principle is further modified by eliminating c with the help of Eq. (19). If oQc=oc ¼ GAs 6¼ 0, the

linear equation (19) can uniquely be solved for c, yielding
c ¼ �c j;R1ð0Þ;R2ð0Þ;uð0Þð Þ ¼ R1 sinu þR2 cosu
GAs

¼ Q

GAs
: ð46Þ
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After c is inserted in the principle, the modified principle of virtual work takes the final form
dW �
�
eðxÞ; jðxÞ;R1ð0Þ;R2ð0Þ;Mð0Þ; uð0Þ;wð0Þ;uð0Þ; uðLÞ;wðLÞ;uðLÞ

	

¼
Z L

0

ððNc 	NÞde þ ðMc 	MÞdjÞdx	 uðLÞ



	 uð0Þ 	
Z L

0

ð1
�

þ eÞ cosu

þ Q

GAs
sinu

�
dxþ L

�
dR1ð0Þ þ wðLÞ



	 wð0Þ þ

Z L

0

ð1
�

þ eÞ sinu 	 Q

GAs
cosu

�
dx
�
dR2ð0Þ

	 uðLÞ



	 uð0Þ 	
Z L

0

jdx
�
dMð0Þ þ ðS1 þR1ð0ÞÞdu1 	 ðS2 þR2ð0ÞÞdu2 	 ðS3 þMð0ÞÞdu3

	 ðS4 	R1ðLÞÞdu4 	 ðS5 	R2ðLÞÞdu5 	 ðS6 	MðLÞÞdu6 ¼ 0: ð47Þ
Note that the only unknown functions in the principle are the extensional and bending strains, eðxÞ and
jðxÞ. The remaining unknowns, displacements uðxÞ, wðxÞ and rotation uðxÞ as well as Lagrangian multi-

pliers R1ðxÞ, R2ðxÞ, MðxÞ are determined from Eqs. (34)–(36) and (40)–(42). This is the reason why they

appear in the functional only through their boundary values.

3.2. Finite element formulation

The Galerkin type of the finite element numerical solution is employed. The extensional strain and the

bending strain are approximated by a standard polynomial interpolation
eðxÞ ¼
XNe

n¼1
PneðxÞen; jðxÞ ¼

XNj

n¼1
PnjðxÞjn; ð48Þ
where PneðxÞ ðn ¼ 1; 2; . . . ;NeÞ are Lagrangian polynomials of order Ne 	 1, and PnjðxÞ ðn ¼ 1; 2; . . . ;NjÞ are
Lagrangian polynomials of order Nj 	 1. The interpolation points are equidistant. en and jn are the nodal
values of extensional and bending strains, respectively. The variation of Eq. (48) gives
deðxÞ ¼
XNe

n¼1
PneðxÞden; djðxÞ ¼

XNj

n¼1
PnjðxÞdjn: ð49Þ
Inserting (48) and (49) into (47) and setting the coefficients of the independent nodal variations den
(n ¼ 1; 2; . . . ;Ne), djn (n ¼ 1; 2; . . . ;Nj), dR1ð0Þ, dR2ð0Þ, dMð0Þ, dui (i ¼ 1; 2; . . . ; 6) to zero results in the

system of discrete equations of the beam finite element:
gne ¼
Z L

0

ðNc 	NÞPne dx ¼ 0; n ¼ 1; 2; . . . ;Ne; ð50Þ

gnj ¼
Z L

0

ðMc 	MÞPnj dx ¼ 0; n ¼ Ne þ 1;Ne þ 2; . . . ;Ne þ Nj; ð51Þ

gNeþNjþ1 ¼ uðLÞ 	 uð0Þ 	
Z L

0

1

  
þ
XNe

n¼1
Pneen

!
cosu þ Q

GAs
sinu

!
dxþ L ¼ 0; ð52Þ

gNeþNjþ2 ¼ wðLÞ 	 wð0Þ þ
Z L

0

1

  
þ
XNe

n¼1
Pneen

!
sinu 	 Q

GAs
cosu

!
dx ¼ 0; ð53Þ
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gNeþNjþ3 ¼ uðLÞ 	 uð0Þ 	
XNj

n¼1

Z L

0

PnjðxÞdx jn ¼ 0; ð54Þ

gNeþNjþ4 ¼ S1 þR1ð0Þ ¼ 0; ð55Þ

gNeþNjþ5 ¼ S2 þR2ð0Þ ¼ 0; ð56Þ

gNeþNjþ6 ¼ S3 þMð0Þ ¼ 0; ð57Þ

gNeþNjþ7 ¼ S4 	R1ð0Þ þ
Z L

0

pX dx ¼ 0; ð58Þ

gNeþNjþ8 ¼ S5 	R2ð0Þ þ
Z L

0

pZ dx ¼ 0; ð59Þ

gNeþNjþ9 ¼ S6 	Mð0Þ 	
Z L

0

1

  "
þ
XNe

n¼1
Pneen

!
	 N

GAs

!
Q	 mY

#
dx ¼ 0: ð60Þ
For a given loading factor, k, Eqs. (50)–(60) constitute a system of Ne þ Nj þ 9 algebraic equa-

tions gðx; kÞ ¼ 0 for Ne þ Nj þ 9 unknowns, where x is the vector of unknowns. There are Ne þ Nj þ 3

internal degrees of freedom: en (n ¼ 1; 2; . . . ;Ne), jn (n ¼ 1; 2; . . . ;Nj), R1ð0Þ, R2ð0Þ, Mð0Þ, and six

external degrees of freedom: uð0Þ, wð0Þ, uð0Þ, uðLÞ, wðLÞ, uðLÞ of the finite element. Unknown func-

tions R1ðxÞ, R2ðxÞ, MðxÞ, uðxÞ, NðxÞ, QðxÞ, needed in Eqs. (50)–(60), are determined from Eqs. (40)–(42),
(36), (11) and (12). Integrals in Eqs. (36), (40) and (41) and are evaluated analytically, while the

integrals in (42), (50), (51), (52), (53) and (60) are evaluated numerically by Lobatto’s integration (for

the discussion on the choice of the numerical integration, see Planinc et al., 2001, and Saje et al.,

1997).

The system of Eqs. (50)–(60) is solved by Newton’s method. After linearizing the equations, eliminating

internal degrees of freedom, and assembling the tangent stiffness matrices of finite elements in the global

coordinate system, we obtain the linear system of equations of the structure
rxGðxi; kÞdxiþ1 ¼ 	Gðxi; kÞ; xiþ1 ¼ xi þ dxiþ1; ð61Þ
which is repeatedly solved for dxiþ1 (i ¼ 0; 1; 2; . . .) until the required accuracy is achieved. xi is the vector of
the external nodal unknowns at iteration i, Gðxi; kÞ ¼ RðxiÞ 	 kP is the vector of the residual nodal forces,

R is the vector of internal forces and kP the vector of external forces, and rxG � KT is the Fr�echet
derivative of G , called the structural tangent stiffness matrix.

The Crisfield arc-length method in the combination with Newton’s method was used during the

softening phase of the response of the reinforced concrete frame, see Crisfield (1981) and Feng et al.
(1996).
4. Constitutive laws of concrete and reinforcing steel

Two different constitutive laws of concrete are employed in our numerical experiments: (i) the

Eurocode 2 law (1999) (henceforth referenced as the ‘EC 2 model’), and (ii) the Desayi and Krishnan law
(1964) (referred to as the ‘DK model’). The reinforcing steel is modelled by the three-linear constitutive

law.
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The EC 2 stress–strain law of concrete is given by the relation
rcðDÞ ¼
0; D < Dcu;

	fcm
kg 	 g2

1þ kg 	 2g
; Dcu 6D6 0;

0; D > 0:

8><
>: ð62Þ
Here, D is extensional strain (in ‰), g ¼ D
Dc1
, and k ¼ 	1:1Ecm Dc1

fcm
; fcm is the strength of concrete in com-

pression (in MPa); Dc1 is the strain at peak stress (in ‰); Dcu is the ultimate strain at compression; Ecm is the

secant modulus of elasticity of concrete (in GPa), and Ec;nom is the nominal tangent modulus of elasticity of

concrete (Fig. 2). The EC 2 model disregards the bearing capacity of concrete in tension.

The constitutive law of concrete according to the DK model reads
rcðDÞ ¼

0; D < Dcu;

Ec0D

1þ D
Dc1

� �2 ; Dcu 6D6Dct1;

Dct2 	 D
Dct2 	 Dct1

f 0
ct;

Dct1 6D6Dct2;

0; D > Dmax:

8>>>>>>>>><
>>>>>>>>>:

ð63Þ
Here Dct1 ¼ 0:55Dcr; Dct2 ¼ Dmax; and Ec0 ¼ 	 2fcm
Dct1

is the initial tangent elastic modulus of concrete.

Although the DK model accounts for the bearing capacity of concrete in tension (‘tension stiffening’),

we assume that the tension part of the constitutive law follows the proposal by Bergan and Holand (1979).

We take f 0ct � 0:55fct (fct is the strength of concrete in tension) and Dct2 � 0:7‰ (Fig. 2). Note that the

ultimate strain at compression, Dcu, depends considerably on stirrups (Desayi and Krishnan, 1964).

The two constitutive models are jointly displayed in Fig. 2. Observe that both models take into account

the softening of concrete in compression. The unloading is considered to be elastic in both models (Fig. 2).
An initial yield stress at compression is 0:4fcm.

The behaviour of reinforcing steel in tension and compression is modelled by the three-linear law:
rsðDÞ ¼

EsD; jDj6Dy1;
ðfy þ EpðjDj 	 Dy1ÞÞ sgnðDÞ; Dy1 < jDj6Dy2;

ðfy þ EpðDy2 	 Dy1ÞÞ 1	 jDj 	 Dy2

Dyu 	 Dy2

� �
sgnðDÞ; Dy2 < jDj6Dyu;

0; jDj > Dyu:

8>>>><
>>>>:

ð64Þ
(a) (b)

Fig. 2. Constitutive laws of concrete according to (a) Eurocode 2 (1999) and (b) Desayi and Krishnan (1964).



Fig. 3. Constitutive law of reinforcing steel.
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Es is the elastic modulus of steel; Ep is its hardening modulus in the plastic region; fy is the yield stress; Dy1 is
the related strain; Dy2 is the strain at the peak stress; and Dyu is the ultimate strain in steel (Fig. 3). The

isotropic-type of hardening is assumed.

Constitutive models are crucial in the computation of the cross-sectional constitutive forces (Nc and

Mc, see Eqs. (15) and (17)), and the components of the tangent constitutive matrix of the cross-section.

These quantities are obtained by the integration over the cross-section, which consists of concrete and steel.

For the integration over concrete parts of the cross-section, the individual part is divided into lmax trape-

zoidal layers (Fig. 4). The contribution of each layer is obtained by the Gaussian integration. The con-

tribution of the reinforcement is taken point-wise. We assume a complete extensional strain conformity
between concrete and steel. The constitutive axial force at the cross-section is obtained from the relation
Nc ¼ Nc;c þNc;s ¼
Xlmax
l¼1
bl

Z
Dzl

rc dzþ
Xkmax
k¼1

rsðDksÞAks : ð65Þ
Here, as previously, index ‘‘c’’ denotes the contribution of concrete, and index ‘‘s’’ that of steel. Likewise,

the constitutive moment is determined from the relation
Mc ¼ Mc;c þMc;s ¼
Xlmax
l¼1
bl

Z
Dzl

rczdzþ
Xkmax
k¼1

rsðDks ÞzksAks : ð66Þ
Aks is the cross-sectional area of the kth reinforcing bar, and zks is the z-coordinate of its centroid.
Fig. 4. Typical cross-section.
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5. Numerical examples

We show three numerical examples and make comparisons of the results with the tests reported in lit-

erature (Espion, 1993; Ferguson and Breen, 1966; Cranston, 1965).
The polynomials with equal degree are chosen for the interpolation of the extensional and bending

strains, i.e. N ¼ Ne ¼ Nj. A finite element with N th degree polynomial, and M-point numerical integration

along the axis of an element, is denoted by EN	M . Lobatto’s integration is employed for the integration with
respect to x, and Gaussian integration over the cross-sections.
5.1. Foure’s column

Our first example is Foure’s column (see Fig. 5). This reinforced concrete column was chosen by the

RILEM Technical Committee TC 114 as one of the bench-mark problems for testing the computational

models and computer programmes for reinforced concrete structures. The column was subjected to an

eccentric, slowly increasing axial force until the collapse took place. The results of the laboratory test were
documented by Espion (1993). The geometric, material, and loading data of the column are given in Fig. 5.

Only three material parameters are given by Espion (1993): the compressive strength of concrete, fcm,
elastic modulus of concrete, Ecm, and strength of steel, fy. The remaining material parameters needed for

our analysis are estimated on the basis of given strength and EC 2. They are: the peak and ultimate

compression strains of concrete, Dc1 ¼ 	2:3‰ and Dcu ¼ 	3:5‰; the elastic modulus of steel, Es ¼ 20 000

kN/cm2; the hardening modulus of steel, Ep ¼ 0 kN/cm2 (no strain-hardening), and its ultimate strains

Dy2 ¼ Dyu ¼ 20‰ (no strain-softening). The EC 2 material model of concrete is employed.

The measured ultimate critical load was P testcr ¼ 454 kN, and the related free-end lateral deflection
w�
cr;test ¼ 2:61 cm (Espion, 1993). The collapse of the column took place at load P testcol ¼ 445 kN and

deflection w�
col;test ¼ 3:21 cm. The graphs in Fig. 6 show the comparisons between the test and the calculated

values for the free-end lateral deflection, w�, as a function of load P . As clearly observed, the present result
and the result of the test agree well. The load–deflection curve was obtained by Crisfield’s arc-length

method with the initial arc-length Ds ¼ 0:25. The results shown in Fig. 6 were obtained by the use of only

two E4	5 finite elements. Such a coarse mesh is sufficient, as will be shown later. Five layers were used for

the integration over the concrete cross-section, and 10-point Gaussian integration within each of the layers.

The ultimate critical load is characterized by the zero determinant of the tangent stiffness matrix of the
structure. The bisection was employed to determine the root of the determinant.
Fig. 5. Foure’s column. Geometric, material, and loading data.



Fig. 6. Foure’s column. Loading factor vs. lateral deflection curve. The comparison between the test and the numerical results.
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The calculated ultimate critical load, P calccr ¼ 447 kN, is only 7 kN smaller than the measured one (see

point A in Fig. 6). The related calculated tip deflection, w�
cr;calc ¼ 2:51 cm, differs from the measured one by

only 0.1 cm. The corresponding maximum compression strain in concrete at the clamped end of the column

is Dc ¼ 	1:32‰ and the related longitudinal stress is rc ¼ 	3:18 kN/cm2; the maximum strain and stress in

steel are also compressive (Ds ¼ 	1:08‰ and rs ¼ 	21:61 kN/cm2). Once the ultimate load is reached, the

load–deflection curve starts decreasing. The calculation shows, that at PB ¼ 360 kN and w�
B ¼ 5:83 cm (B

marks the point in the load–deflection curve in Fig. 6) the maximum compressive strain in concrete

amounts to Dc ¼ 	2:26‰, while the related stress is rc ¼ 	3:82 kN/cm2. The fact that jDcj < Dc1 ¼ 2:3‰
indicates that concrete is still in the hardening regime. The most strained steel bar at the clamped end is now

in tension, Ds ¼ 1:86‰ (rs ¼ 37:21 kN/cm2). As the yield strain of steel is Dy1 ¼ fy=Es ¼ 2:325‰ > 1:86‰,

it is clear that steel has behaved elastically up to this moment.

Shortly after point B in Fig. 6 is reached, at P ¼ 297 kN, w� ¼ 7:71 cm, the tangent stiffness matrix of the
column becomes singular again. Unfortunately, this critical point does not coincide with the physical

collapse of the column measured in the experiment––it took place a lot earlier, see Fig. 6 (Espion, 1993).
The calculations that use the DK model and employ the same material parameters as EC 2, give virtually

identical results compared to the EC 2 model. Therefore, for the present problem, the two models are

equivalent. Fig. 6 also shows the load–deflection curve of Carol and Murcia (1989), who used Sargin’s

model of concrete and the bi-linear elastic–plastic model for the reinforcement. They employed the 2nd

order beam theory to capture geometrical non-linearity. Their estimate of the critical load is fairly good,

whereas their estimate of the critical deflection is not.

It is instructive to study the effect of the number of elements, the degree of interpolation, and the order of

Lobatto’s integration on the accuracy of the critical load. The results are presented in Fig. 7. They are
compared to the highly accurate solution obtained by employing 16 elements E8	9, and marked by Pcr;16.
Fig. 7a shows the effect of the number of elements. We see that the increase in the number of elements is

followed by a substantial decrease in the error. Fig. 7b shows the effect of the integration order when using

one-element mesh to model the column. This time the increase in the integration order does not uncon-

ditionally mean the decrease in the error (see Planinc et al., 2001, for the discussion). Please notice that one-

element solution is already very accurate: for one element E3	4, the relative error is DPcr ¼ 0:11%; for one
element E4	5, it is only 0.009%.
5.2. Square frame

Our second example is a square frame, tested by Ferguson and Breen (1966) as frame L3. The results of
the test were presented by Gunnin et al. (1977). The geometry of cross-sections of columns and beams of the



(b)(a)

Fig. 7. Foure’s column. The error of Pcr vs. (a) number of finite elements, (b) order of numerical integration; DPcr ¼
Pcr 	 Pcr;16
Pcr;16

����
����.
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frame along with material data for concrete and steel (fcm, fy, Es) as offered by Gunnin et al. (1977) are
displayed in Fig. 8. The remaining material parameters needed for our analysis but not stated in Gunnin

et al. (1977) are estimated on the basis of the given strengths of concrete and steel, and EC 2. They are:

elastic modulus of concrete, Ecm ¼ 2800 kN/cm2; peak and ultimate compression strains of concrete,

Dc1 ¼ 	1:85‰ and Dcu ¼ 	3:5‰; hardening modulus of steel, Ep ¼ 0 kN/cm2 (no strain-hardening), and

its ultimate strains Dy2 ¼ Dyu ¼ 20‰ (no strain-softening). The frame was tested in the laboratory under

slowly increasing vertical and horizontal forces until the frame collapsed.

The load–horizontal displacement curve was determined by Crisfield’s arc-length method. The initial

arc-length was Ds ¼ 0:75. The results in Fig. 9 were obtained by the mesh consisting of four E4	5 finite
elements, i.e., each column or beam was modelled by one element. Five layers were used for the integration

over the concrete cross-section, and 10-point Gaussian integration within each of them. The EC 2 model

was employed along with the no-tension assumption of concrete.
Fig. 8. Square frame of Ferguson and Breen (1966). Geometric, material, and loading data.



Fig. 9. Square frame. Load vs. horizontal deflection curve.
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The ultimate critical load measured in the test was P testcr ¼ 141 kN, and the corresponding horizontal

displacement was u�cr;test ¼ 6:11 cm. The calculated critical load (point A in Fig. 9) agrees well with the

measured one, and is P calccr ¼ 136:4 kN. The related horizontal displacement of the point of application of

force 2H is u�cr;calc ¼ 5:21 cm. Fig. 9 shows the comparisons for the horizontal displacement, u�, as a function
of load P . As we can see, the results agree nicely. The numerical solution of Gunnin et al. (1977) is also

displayed. Their solution is rather imprecise, which may be due to an insufficiently accurate modelling of

the geometric non-linearity by the ‘P–D method’.

An equal maximum compression strain in concrete at the ultimate critical load appears in two cross-

sections, both in the right end of the beams: in the lower beam, at its upper side, and in the upper beam, at

its lower side of the cross-section. The maximum compression strain is Dc ¼ 	1:73‰. The extensional

strain in steel reinforcing bars is also maximal at these cross-sections ðDs ¼ 1:25‰Þ.
Once the ultimate critical load is reached, the load–horizontal displacement curve starts decreasing. At

the load PB ¼ 126:8 kN and the horizontal displacement u�B ¼ 9:04 cm (marked by point B on the load–

displacement curve in Fig. 9), the maximum compressive strain in concrete becomes as high as

Dc ¼ 	3:01‰, which indicates the softening of concrete; by contrast, the most strained steel bar which

remains in tension ðDs ¼ 1:89‰Þ behaves elastically.
A detailed study of errors in the horizontal displacement, u�, and the constitutive moment at the tip of

the right-hand column,M�
c , is now made as a function of the type and number of finite elements. The errors

at load P ¼ 130 kN, which is roughly 95% of the ultimate critical load, are presented. The comparisons are

shown in Fig. 10a and b, where various results are compared to those obtained with 32 elements E8	9, i.e. 8
(a) (b)

Fig. 10. Square frame. The accuracy of results as a function of number and type of finite elements at load P ¼ 130 kN. (a) Horizontal

displacement, Du� ¼ u� 	 u�32
u�32

����
����; (b) constitutive moment at the top of the right-hand column, DM�

c ¼
M�

c 	M�
c;32

M�
c;32

�����
�����.
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very accurate elements per column or beam. These results are denoted by u�32 and M�
c;32. As observed from

the graphs, the relative errors are small even if only four elements E4	5 are used; e.g. the relative error in the
horizontal displacement is about 1%, and the error in the constitutive moment is about 0.5%. Note that the

order of numerical integration greater than N þ 1 somewhat improves the results for displacements, but
makes the results for constitutive moments substantially worse (see Fig. 10b); e.g. employing four elements

E4	5 makes the error in DM�
c to be 0.57% in contrast to 2.33% when four elements E4	9 are used. This

interesting result is in agreement with the discussion by Planinc et al. (2001) for elastic–plastic material.

In design the accuracy of stresses is of great importance. The stresses are determined from the axial and

shear forces and the bending moment. In numerical solutions, there are two kinds of forces and moments,

i.e. the equilibrium and the constitutive ones (see Section 2). The smaller the difference between the two

types of forces, the more accurate the solution; hence, the differences jNc 	Nj and jMc 	Mj are the

indicators of the accuracy of the solution. Fig. 11 shows the graphs of jMc 	Mj for the right-hand column
of the frame at P ¼ 130 kN for cases where one, two, three, and four finite elements per column or beam are

applied. The results of two different-order elements, E4	5 and E4	9, are displayed. The positions of the

Lobatto integration points are shown by circles (s). For element E4	5, where the number of interpolation

points coincides with the order of Lobatto’s integration, the two moments coincide at the integration

points. Otherwise this is not the case (see the results of element E4	9); however, the peak and the overall

errors now appear to be much smaller. Observe that the error diminishes exponentially with the growth of

the number of elements (see Fig. 11a–d).

The results show that very reliable values for the bending moment are obtained at integration points if
the number of interpolation points coincides with the order of Lobatto’s integration. For example, the
(a) (b)

(c) (d)

Fig. 11. Square frame. The graph of DM ¼ Mc 	M

Mmax

����
���� vs. x=L for the right-hand column (P ¼ 130 kN): (a) one element, (b) two

elements, (c) three elements, (d) four elements.
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largest bending moment at the top of the right-hand column is Mmax ¼ 356:09 and 358.15 kN cm for one

and four-element meshes, respectively, the difference being only about 0.6%. Similar conclusions are valid

for the axial forces. Note that substantially larger errors would be obtained with classical finite elements if

the consistency conditions (18)–(20) were not applied.
5.3. Cranston’s portal frame

A two-hinge pinned reinforced concrete frame, tested by Cranston (1965) as frame P2, and analysed by

Lazaro and Richards (1973) and Ba�zant et al. (1987a), is studied in this section. The behaviour of

Cranston’s frame P2 is characterized by a massive strain-softening of concrete, which triggers localizations
of deformations and an overall softening of the structure. A special approach is needed to model the strain-

softening of material numerically. In this paper we assume that the localization of deformation takes place

in a small, yet a finite-length region of the beam, DLm, and determine its length from the fracture energy of

concrete in compression, Gc
f , as described in Coleman and Spacone (2001). This approach is often called the

local continuum approach.

The descriptive data are displayed in Fig. 12. Only two material parameters are given in Cranston (1965),

i.e. fcm and fy. For the remaining parameters, we made estimates using the given strengths and EC 2:

Ecm ¼ 3150 kN/cm2; Dc1 ¼ 	2:3‰; Es ¼ 20,000 kN/cm2; Ep ¼ 200 kN/cm2; Dy2 ¼ 10‰ and Dyu ¼ 300‰.
(a) (b)

Fig. 12. Cranston’s portal frame. Geometrical, material, and loading data. (a) Original position of reinforcement (Case 1); (b)

alternative position of reinforcement (Case 2).
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The same parameters were taken for the DK model. The DK model needs two additional parameters to

consider the tension-stiffening, i.e. Dct1 ¼ D0
cr ¼ 0:055‰ and Dmax ¼ 0:7‰. Similar, but not equal param-

eters were assumed by Lazaro and Richards (1973) and Ba�zant et al. (1987a). We assumed that the fracture

energy of concrete in compression is Gc
f ¼ 20 N/mm (Jansen and Shah, 1997), and the ultimate fracture

strain in compression Dcu ¼ 	50‰. As a result, the length of the localization zone of concrete is DLm ¼ 4

cm (Coleman and Spacone, 2001).

The initial arc-length in Crisfield’s arc-length method was Ds ¼ 0:5. The results in Fig. 13 were obtained
by the use of 8 finite elements E4	5 and 13 short constant-strain elements E0	1 of length DLm ¼ 4 cm. The

finite-element mesh was designed in such a way that short elements could capture the localization of

deformations. Thus, the beam was modelled by (in the following order from left to right): one short element

E0	1 at the left node of the beam (length: 4 cm), two elements E4	5 (lengths: 51 cm and 55 cm), 11 short

elements between the applied forces, two elements E4	5 and one short element. The columns were divided
into two elements E4	5 each. The finite element mesh is depicted in Fig. 12a. Ten layers were used for the

integration over the concrete cross-sections, and the 10-point Gaussian integration was employed within

each of them. For the sake of comparison with other numerical studies (Ba�zant et al., 1987a, and Lazaro

and Richards, 1973), only one half of the frame was analysed assuming its symmetry.

Fig. 13 shows graphs of the vertical deflection, w�, at mid-point T2 as a function of the load, P . The
results are compared to those obtained by Cranston (1965). A good overall agreement between the two

results may be observed. The numerical results by Ba�zant et al. (1987a) and Lazaro and Richards (1973) are
also displayed (note that their solutions employed the geometrically linear theory).

The form of the load–deflection curve is roughly three-linear. Up to point A, the frame behaves virtually
elastically. From A to B, some of the cross-sections have partly plastified, which results in a decreased

stiffness of the frame. At B the determinant of the tangent stiffness matrix of the frame becomes zero

ðdetKT ¼ 0Þ. The analysis of the matrix eigenvectors shows that the limit load of the frame and not its

bifurcation point is reached. Simultaneously, the determinant of the tangent constitutive matrix of the

beam cross-section at point T1 (and also at point T 0
1) becomes zero (detC ¼ 0, see Fig. 14b), which indicates

that the ultimate bearing capacity of both, the cross-section and the frame, is reached. In the subsequent

deformation, the frame exhibits a softening behaviour, both globally and locally at point T1. At point C of
the load–displacement curve, the ultimate bearing capacity is simultaneously reached at all cross-sections

between the forces (point T2 will represent these points), see the curve marked by detC in Fig. 14d. These

cross-sections soften afterwards.

As already stated, at the ultimate critical load, Pcr ¼ 21:10 kN, both, the determinant of the tangent

stiffness matrix of the frame, and the determinant of the tangent constitutive matrix of the beam cross-

section at T1 become zero. The related largest compression strain in concrete at T1 is Dc ¼ 	2:44‰ which
Fig. 13. Cranston’s portal frame. Load–mid-point deflection curves.



(a) (b)

(c) (d)

Fig. 14. Cranston’s portal frame. Graphs ofNc,Mc, C11, and detC , as functions of arc-length s. (a)–(b) At the left-end cross-section of
the beam, point T1, (c)–(d) at the mid-point cross-section of the beam, point T2.
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indicates that some of the fibres in concrete have entered the softening regime before the detC becomes

zero. The same holds for the steel bars, where the tensile strain Ds ¼ 11:32‰ is greater than Dy2 ¼ 10‰,

where the steel starts softening. The related bending moment is M ¼ 	1165 kN cm, which is only a little

less than the value obtained by Cranston (1965) on the basis of the measured strain distributions

(MCranston ¼ 	1247 kN cm) (see Fig. 15a). These quantities at the mid-point cross-section, point T2, are: the
maximal compression strain in concrete is Dc ¼ 	1:96‰, the tension strain in steel is Ds ¼ 7:75‰, and

the bending moment is M ¼ 1147 kN cm (Fig. 15b). Fig. 14c–d show that the cross-section is still in the

hardening regime. The deflection at the mid-point T2 is w�
cr ¼ 2:34 cm.
(a) (b)

Fig. 15. Cranston’s portal frame. Bending moments. (a) At the left-end cross-section of the beam, point T1, (b) at the mid-point cross-
section of the beam, point T2.
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Point C marks the state of the frame where the cross-section T2 starts softening. The related force and

mid-point deflection are PC ¼ 20:41 kN and wC ¼ 2:97 cm. The maximal compression strain in concrete at

T1 is Dc ¼ 	5:03‰, while the tension strain in steel bars is Ds ¼ 33:31‰, which is roughly three times larger

than at the ultimate load, although it is still much smaller than the assumed ultimate strain Dyu ¼ 300‰.
Consequently, the constitutive moment at this cross-section has decreased and amounts to M ¼ 	1076
kN cm (Fig. 15a). The decrease of the moment again indicates the softening of the cross-section. The

determinant of the tangent constitutive matrix of the cross-section at T1 is negative (see Fig. 14b). The

maximal compression strain in concrete at the mid-point cross-section T2 is Dc ¼ 	2:32‰. The tension

strain in steel bars has increased to Ds ¼ 10:32‰. The bending moment at the cross-section has also

increased and amounts to M ¼ 1164 kN cm (Fig. 15b).

The redistribution of stresses in the beam during the softening phase is shown in Fig. 16. Fig. 16a shows

the normal stress distribution at PA ¼ 15:34 kN, and Fig. 16b at PD ¼ 16:49 kN. It is indicated where the
stresses are in the elastic regime (either in loading or unloading from the plastic state), or in the plastic

regime (either in hardening or softening). At load PA, the beam material is mostly elastic, and the bearing

mechanism of the beam is a ‘compression arch’. A relatively long region at the upper side of the beam at

its central part is in the plastic regime. Once the global softening develops, the plastic region gets smaller

and smaller due to the localization of deformation. Note also that load PD ¼ 16:49 kN is greater than the

load at A.
We would like to show that only a minor change in the reinforcement length may cause major changes in

the behaviour of the frame. We keep the material and geometrical data as in the previous analysis, and
change only the length of the bars in the lower part of the cross-section, see Fig. 12b. Ba�zant et al. (1987a)
assumed this reinforcement layout, yet they took different values of material parameters to model

Cranston’s frame.

We used the finite element mesh with 8 finite elements E4	5 and 4 short constant-strain elements E0	1 of
length DLm ¼ 4 cm. The mesh is depicted in Fig. 12b. This case will be referred to as ‘Case 2’ to distinguish

it from the previous case, ‘Case 1’.
(a)

(c) (d)

(b)

Fig. 16. Cranston’s portal frame. Stresses in the beam. (a) Case 1, load PA ¼ 15:34 kN (point A); (b) Case 1, load PD ¼ 16:49 kN

(point D); (c) Case 2, load PA0 ¼ 12:62 kN (point A0); (d) Case 2, load PC0 ¼ 9:46 kN (point C0).



Fig. 17. Cranston’s portal frame. The load–displacement curve as a function of the reinforcement layout, Case 1 and Case 2.
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The load–displacement curve for Case 2 is shown in Fig. 17 and compared to the results of Cranston’s

test and Case 1. The bearing capacity is now considerably lower. The sequence of the ‘critical events’ is also

very different. This time the cross-section T3 and its symmetric companion T 0
3 (see Fig. 12b) first reach their

ultimate bearing capacities at load PA0 ¼ 12:62 kN (A0 is the point on the load–displacement curve, see Fig.

17) which is smaller than the ultimate critical load of the frame (PB0 ¼ 15:52 kN). This is due to the fact, that
the cross-section T3 is insufficiently reinforced to compensate fully the imposed (the equilibrium) bending

moment. During the subsequent deformation, the cross-sections T3 and T 0
3 soften. At point B

0 the bearing

capacities of cross-section T1 and its symmetric companion T 0
1, and of the frame are reached simultaneously.

Since then the cross-sections T1, T 0
1, T3 and T

0
3 soften. Let us recall that Ba�zant et al. (1987a) employed the

reinforcement layout of Case 2. Their load–displacement curve is displayed in Fig. 13 and a good agreement

may be observed with Cranston’s. Yet material parameters they employed do not fully agree with those
measured in Cranston’s tests. For example, their yield strength of steel was assumed to be fy ¼ 40 kN/cm2

instead of fy ¼ 29:3 kN/cm2 given by Cranston. Such a change of material data influences the results

substantially and offers possibilities to fit the numerical response curve with the one obtained in the test.

Fig. 16 shows the no-stress, elastic, and plastic regions in concrete and steel for Case 2. The figure again

confirms that a small change in the reinforcement layout causes notably different distributions of stresses in

the frame. This is also true for the deformed shapes of the two frames in the softening phase (Fig. 18). The

differences between the deformed shapes are clearly seen.

Our analyses assumed a complete symmetry of the frame. This was also assumed by Lazaro and
Richards (1973) and Ba�zant et al. (1987a). In Cranston’s test, however, a large horizontal displacement was
reported and attributed to an initial geometrical imperfection of the frame. Therefore, we also analysed the

frame (see Fig. 20b) with the skew columns, the small imperfection being D ¼ 0:32 cm. To fit the measured
(a) (b)

Fig. 18. Cranston’s portal frame. The comparison of deformed shapes in the softening phase (magnified 15�).



Fig. 19. Cranston’s portal frame with a geometric imperfection. Finite-element mesh.
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response, we had to change the following data: Dy2 ¼ 11‰ (instead of 10‰ taken previously); Dyu ¼ 1300‰
(300‰); Dcu ¼ 	100‰ ()50‰); Gc

f ¼ 25 N/mm (20 N/mm), while the rest of the material data remains as in

Case 1. The finite-element mesh, consisting of 15 short elements (DLm ¼ 4 cm) and eight E4	5 elements, is

displayed in Fig. 19.

Fig. 20a shows the load–displacement curves of the imperfect frame. The vertical displacement w� at
point T2 and the horizontal displacement u� at point T1 are displayed. The comparison with the results of

the test shows excellent agreement between the computed and experimental results.
(a)

(b)

Fig. 20. Cranston’s portal frame with the geometric imperfection. (a) Load–displacement curves; (b) deformed shapes in softening

regime (15· magnified).
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At point F of the load–displacement curve the frame reaches the ultimate critical load Pcr ¼ 21:09 kN.

Simultaneously, the cross-section at T4 (see Fig. 19) reaches the ultimate bearing capacity. The related

compressive strain in concrete at the bottom of the cross-section is Dc ¼ 	2:59‰, and the tension strain in

the steel bar at the top of the cross-section is Ds ¼ 12:36‰. It appears that the ultimate critical load of the
frame is only moderately sensitive to the geometrical imperfection. The vertical displacement is roughly the

same, too: w�
cr ¼ 2:27 cm compared to 2.34 cm in the perfect frame. The horizontal displacement, however,

is now four times greater: u�cr ¼ 0:42 cm compared to 0.11 cm in the perfect frame. The values are in a very

good accord with the measured ones (Fig. 20a).

At PG ¼ 20:42 kN (the corresponding vertical displacement is w�
G ¼ 2:97 cm) the cross-section T5 (see

Fig. 19) starts softening. This compares well with the situation without the imperfection (see point C in Fig.

13), only that now the horizontal displacement of point T5 is u�G ¼ 2:09 cm, which is about 12 times larger

than the displacement of the perfect frame (u�G ¼ 0:17 cm).
The deformed shapes of the frame in the post-critical softening phase are shown in Fig. 20b. Observe

that the displacements in Fig. 20b are 15 times magnified.

In Fig. 21 we display the distributions of the extensional and bending strains along the axis of the frame

for two deformation stages in the softening phase of the frame. The graphs clearly show a very high

localization of deformations at points T4 and T5. We wish to stress that the inclusion of constant-strain

elements in the finite-element mesh was essential to trigger the localization of deformation. We note that

both strain measures, e and j, have localized. This shows how important it is to consider both strain

measures in the analyses. Many beam formulations (e.g. Ba�zant et al., 1987a; Jir�asek, 1997) neglect
extensional strain in the strain-softening calculations, which often leads to unsatisfactory results.
(a) (b)

(c) (d)

Fig. 21. Cranston’s portal frame with the geometric imperfection. The distribution of strain measures, e and j, along the axis of the
frame. (a) Extensional strain e at PF, (b) bending strain j at PF, (c) extensional strain e at PH, (d) bending strain j at PH.



Fig. 22. Cranston’s portal frame. The distributions of normal stress and tangent modulus in concrete at cross-sections T1 and T2 at
P ¼ 20 kN.

(a) (b)

Fig. 23. Cranston’s portal frame. The accuracy of numerical integrations over the cross-section at T1; P ¼ 20 kN. (a)

DNc;cðDMc;cÞ ¼
NðMÞc 	NðMÞc;50

NðMÞc;50

�����
����� in concrete, (b) C11;c in concrete, and detC c of the concrete part of the cross-section.
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Our final remark concerns the numerical integration over the cross-section. Fig. 22 shows the distri-
butions of the normal stress and the tangent modulus in concrete at cross-sections T1 and T2 at

P ¼ 0:93Pcr ¼ 20 kN for the geometrically perfect frame, Case 1. It is clear that the stress and the tangent

modulus are discontinuous functions of z. Because standard Gaussian integration rules require that the

integrated functions are continuous, these methods are not directly applicable in such situations. Fig. 23

shows the convergence graphs for four characteristic quantities of the cross-section T1:Nc,Mc, and C11;c in

concrete, and detC c of the concrete part of the cross-section. 1, 3, 5, 10, 20, and 50 layers are used,

respectively, and 10-point Gaussian or Lobatto’s integration within each layer to model the cross-section.

Gaussian integration results in much more accurate results for small number of layers (1 or 3), while for a
bigger number of layers, the two integration methods become comparable. The increase of the number of

layers seems to improve the results. The convergence, however, is relatively slow (see Fig. 23b). This is due

to the discontinuous distribution of stresses and material tangent moduli over the cross-section. A special

numerical integration technique seems to be required to improve the results.
6. Conclusions

The materially and geometrically non-linear analysis of concrete structures is a difficult task. The
analysis tool must be sophisticated enough to capture the phenomena like strain-softening and strain
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localization in concrete with a sufficient precision. In order to construct such a tool, we have derived a new

family of beam finite elements. They are based on Reissner’s planar beam theory and therefore consider

exact geometrical non-linearity. Their novelties are: (i) the extensional and the bending strains are the only

interpolated functions; (ii) the equilibrium and the constitutive internal forces are equal at the integration
points. The members of the finite element family can equally well describe extensible or inextensible beams,

shear stiff or shear deformable beams, and thin or thick beams. The elements are rigid-body displacement

invariant and path-independent for conservative problems. The elements are applied in the analysis of the

reinforced concrete planar frames.

We employed the EC 2 constitutive model of concrete and the model of Desayi and Krishnan (1964).

The strain-hardening as well as the strain-softening of concrete were taken into account, yet, for the

present, the effect of creep and shrinkage in concrete were neglected. The three-linear stress–strain diagram

for the reinforcing steel was assumed along with the isotropic-type of the strain-hardening and softening.
The no-slip contact between concrete and steel was assumed.

The efficiency of our finite element model was proved through the analyses of three realistic frame

structures. All of them were previously tested in the laboratory. The behaviour of the first structure is

characterized by the dominance of the geometric instability, whereas the behaviour of the third structure is

more materially dominant. We directed our analyses into the study of the post-critical behaviour of frames,

in particular into the description of the material softening of cross-sections, the softening of the global

response, and their interaction. The results include the graphs of the strain localizations at cross-sections

and the redistributions of regions of strain-hardening, strain-softening and unloading.
Fundamental to our strain-softening analysis is the introduction of the short constant-strain element in

our new beam finite element family. This enables us to detect automatically the loss of the local stability at

the cross-section and to proceed into the strain-softening regime.
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