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Abstract

A family of new beam finite elements for geometrically and materially non-linear static analysis of reinforced
concrete planar frames is derived, in which strain measures are the only interpolated unknowns, and where the con-
stitutive and equilibrium internal forces are equal at integration points. The strain-localization caused by the strain-
softening at cross-sections is resolved by the introduction of a ‘short constant-strain element’. Comparisons between
numerical and experimental results on planar frames in pre- and post-critical states show both good accuracy and
computational efficiency of the present formulation.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Since it was reinforced by steel bars more than a century ago, concrete has been a very suitable con-
structional material, and reinforced concrete structures have played an important role in the built envi-
ronment. For obvious reasons, computational models for the everyday structural analysis of reinforced
concrete structures were simple and conservative at first. Nowadays, when the capabilities of the
mechanical modelling are much larger, an engineer can perform analyses which give considerably better
predictions of stresses, displacements, limit loads and mechanisms of the damage and the destruction. There
are, however, several problems that still need to be solved if we want to predict the behaviour of reinforced
concrete structures even more reliably and with a greater precision. One such problem is the softening of
concrete and its effect on the mechanical response of structures.

The accuracy of the non-linear analysis of a reinforced concrete structure largely depends on how we
model concrete, steel, and their mutual interaction, and which method of the discretization we use. The
behaviour of concrete and steel under various loading conditions has been experimentally studied for long
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and is well described; the mathematical description of the concrete behaviour, on the other hand, is still not
sufficiently developed (see Contrafatto and Cuomo, 2002 and Grassel et al., 2002, among others, for their
new constitutive models and comments on their behaviour). A number of discretization methods have so
far been proposed, many of them with the particular emphasis on the effect of softening of concrete on the
global (often softening) response of the structure (see Chen et al., 2000; Peerlings et al., 2002; or Wells and
Sluys, 2000).

Engineering structures are often composed of beams, plates and shells, and have complicated geomet-
rical shapes. At the present state of the computer hardware, the full 3D non-linear structural analysis of
structures is very limited (Khaloo and Tariverdilo, 2002). That is why we usually employ 1D (beam) and 2D
(plate and shell) finite elements in the structural analysis and why the research to improve 1D and 2D finite
elements is still continuing.

One of the essential steps in the beam modelling is the way material is considered. There are two choices
available. We can either assume the constitutive equations of the cross-section, which relate its stress-
resultants to cross-sectional deformation variables (Simo et al., 1984; Kwak and Kim, 2002)—the appli-
cability of this kind of constitutive equations is simple if rather limited, or we can assume the constitutive
equations of a fibre, which relate its stress and strain. While the latter is a much more accurate approach,
making it possible to include various material phenomena, it is computationally more demanding as it
needs the integration of stresses and material moduli across the cross-section at each Gaussian point of an
element and at each Newton’s iteration.

The topic of the strain-softening in brittle heterogeneous materials has been widely discussed for years,
see, ¢.g. Bazant et al. (1987a,b) and Maier and Perego (1992), particularly with regard to the deduction of
efficient numerical procedures (Bazant and Mazars, 1990). In the context of concrete frame-like structures,
two approaches have been suggested. The most important assumption of the first one is that the strain-
softening triggers the point-wise strain localization (a ‘plastic hinge’); once the hinge emerges, its sub-
sequent behaviour is governed by the moment-rotation law obtained experimentally (Jirdsek, 1997). This
model is simple to use and independent of the finite-element mesh, but it disregards the effect of extensional
strain and is thus convenient only for a certain class of problems. The second approach is based on
experimental evidence that the softening of material develops on a finite-length region of a concrete beam
(Bazant et al., 1987a,b). The present paper follows the second approach.

The literature on geometrically linear—materially non-linear analysis of reinforced concrete frames is
extensive, see, e.g. the works by Bazant et al. (1987a,b), Kim and Lee (1992), Lazaro and Richards (1973),
Pottier and Swoboda (1987), Darvall and Mendis (1985), or Rasheed and Dinno (1994), among many, and
the references therein. In contrast, a lot less publications can be found which consider both geometric and
material non-linearity, see, e.g. the paper by El-Metwally et al. (1990) on the stability of a reinforced
concrete column, or Carol and Murcia (1989), Gunnin et al. (1977), and Mendis and Darvall (1988).

In the present paper we deal with the fibre-based constitutive equations of concrete and steel, and
employ standard non-linear material laws, as used in design, but disregard the phenomena such as creep
and shrinkage of concrete. Our main goal is to show a new approach to the strain-softening analysis
of reinforced concrete frame-like structures. We derive a family of new beam finite elements for
the geometrically and materially non-linear static analysis of reinforced concrete planar frames. The
kinematically exact beam theory according to Reissner (1972) is employed as a theoretical basis of our
finite-element formulation. There are two original contributions in our finite elements: (i) strains are the
only interpolated unknowns; (ii) the constitutive and equilibrium internal forces are enforced to be equal
at integration points. While one of the consequences of the former is the absence of locking, the latter
assures the equality of the bearing capacity of the chosen cross-sections and their stress-resultants due to
the imposed loading.

While the effect of shear strain is considered in our theoretical deductions, it is disregarded in our
numerical examples. The reinforcing steel bars are modelled as steel layers within a generally inhomo-
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geneous, layered, rigid cross-section where the conformity of axial strains in concrete and in steel layers at
the contact is assumed. The behaviour of concrete in compression and tension is modelled and analysed by
the constitutive laws of Eurocode 2 (1999) and Desayi and Krishnan (1964). Both models exhibit the strain-
softening in compression. The behaviour of steel reinforcing bars is assumed to be elasto-plastic with a
strain-softening branch. What regards the strain-softening and strain-localization, the essential step in our
formulation is the introduction of a ‘short constant-strain element’ (as was in the context of the geomet-
rically linear theory suggested by Bazant et al., 1987a; Darvall and Mendis, 1985; Kim and Lee, 1992;
Coleman and Spacone, 2001).

2. Formulation of the non-linear planar beam model
2.1. Kinematic relations

We consider a planar beam of initial, undeformed length L, and constant reinforced concrete cross-
section 4. The deformed configuration of the beam is described by a planar curve—the line of centroids of
the concrete section, and by the family of its cross-sections. The relative position of a centroidal particle
with respect to the curve is identified by the material coordinate, x € [0, L]. Its absolute position with respect
to the spatial Cartesian coordinate system with coordinates X, Y, Z, and unit base vectors Ey, Ey, Ez, is
given by vector Ry(x). The cross-sectional plane at x is identified by the unit vector e, (x) perpendicular to
the cross-section, and by the in-plane unit vectors e, (x) and e.(x) with e,(x) = Ey. Vectors e,(x), e,(x), e.(x)
constitute the basis of material coordinate system with material coordinates x, y, z. An arbitrary particle of
the cross-sectional plane at x is identified by a pair of material coordinates, (y,z) € 4. An arbitrary particle
of the beam is identified by a trio of coordinates, (x,y,z) € L x 4. The deformed position of particle (x, y,z)
with respect to the spatial coordinate system is given by

R(x,y,z) = Ro(x) + ye,(x) + ze.(x) = X (x,y,2)Ex + Y(x,y,2)Ey + Z(x,y,2)E. (1)

We assume that the geometrical shape of the cross-section and the distribution of material (i.e. concrete
and steel) are symmetric with respect to the plane of deformation, (X, Z). For the simplicity of derivation,
we assume that the beam in the undeformed configuration is straight and lies on X-axis of the spatial
coordinate system so that the spatial and material coordinates coincide initially: X =x, ¥ =y, Z =z, and
Ex=¢" Ey= eg, E; = ¢°. Consequently, in the undeformed configuration, Eq. (1) is reduced to

r(x,y,2) = ro(x) + ye,(x) + ze(x) = xEx + yEy + zEy, 2)

where ry = xEx and r are position vectors of centroidal particle (x,0,0) and particle (x,y,z), respectively,

and ¢° and ¢ are the undeformed material base vectors. By introducing the displacement vector of the

centroidal axis, u = Ry — ro = uEy + vEy + wEz, and the condition v = 0 for the planar motion of the
beam into Eq. (1), we obtain (see Fig. 1)

R(x,y,2) = Ro(x) +ye,(x) + ze-(x) = (x + u(x)) Ex + w(x)Ez + ye,(x) + ze-(x), 3)

where u and w are the components of the displacement vector with respect to the spatial basis. They are
related to the strain measures ¢, y, and x by the kinematic equations (Reissner, 1972)

1+ (x) — (1 +¢(x)) cos p(x) — y(x) sin p(x) = 0, 4)
w(x) + (1 + &(x)) sin ¢(x) — y(x) cos ¢(x) = 0, (5)

¢'(x) = K(x) = 0. (6)
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Fig. 1. Deformed and undeformed configurations of the beam.

Here, ¢(x) > —1 is extensional strain of the axis; y(x) is its shear strain; x(x) is bending strain, closely related
to the curvature of the axis (Vratanar and Saje, 1998); and ¢(x) is the rotation of the cross-section (Fig. 1).
In (4)—(6), the prime (') denotes the derivative with respect to x. As no bounds on the displacements and the
rotation are set, the assumed kinematics is usually marked as kinematically or geometrically exact. ¢, y, and
K are deformation variables, while u, w, and ¢ are termed kinematic variables.

The extensional strain of an arbitrary particle (x,y,z) will be denoted by D(x, y,z). It is a linear function
of z

D(x,y,z) = &(x) + zx(x), (7)
which is the implication of the assumed Bernoulli hypothesis. It is clear from Eq. (7) that D depends on x

and z only. Hence, the notation D(x,z) will be used.

2.2. Equilibrium equations

The equilibrium equations of the beam consist of three scalar differential equations of the first order
(Saje, 1990)

P (x) + px(x) =0, (8)
Ry (x) + pz(x) = 0, 9)
M (x) + (1 4+ (x) Ry (x) — W (x) R (x) + my(x) =0, (10)

for the three components %(x), %,(x), and .#(x) of the -cross-sectional stress-resultants,
N(x) = #1(x)Ex + #,(x)Ez and M (x) = .4 (x)Ey. In Eqgs. (8)—(10), px(x), pz(x), and my(x) are the external
distributed force and moment loads per unit of undeformed centroidal axis in the X, Z, and Y directions,
respectively. The stress-resultant /V can also be expressed in the material basis, i.e. N(x) = A (x)e, + 2(x)e..
Its components, /" and 2, are axial and shear forces of the cross-section. They are related to #, and %, by
(Saje, 1990)
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N =R cosp — R,sin @, (11)

9 = R, sin ¢ + A, cos @. (12)

N, 2, and A are called the equilibrium axial and shear force, and the equilibrium bending
moment, respectively, in contrast to the constitutive forces and moment, which will be defined in the next
section.

2.3. Constitutive relations

The constitutive relations between the extensional strain, D = ¢ + zk, and the normal stress, o, and the
shear strain, y, and the shear stress, 7, are assumed to be given by the formal relations

¢ =7 (D), (13)

T=9(y). (14)

Functions & (D) and %(y) are chosen according to a specific material to be modelled. In reinforced concrete
beams, the effect of shear is usually small compared to the effects of bending, compression and tension, and
is hard to be described mathematically. We will assume a simple linear constitutive equation %(y) = Gy,
where G is shear modulus of material. The integration of stresses over the cross-section yields the so called
constitutive axial and shear forces and the constitutive moment:

Wl K) :/AodA:/A?(D)dA, (15)
2:0) = | vaa= [ 96)a1 = G0 (16)
M (e, K) :/AzadA = /Azgf’(D)dA. (17)

Ag < A is the shear area of the cross-section (Cowper, 1966). The equilibrium requires the constitutive and
equilibrium forces and moments at cross-sections to be equal, 4= A", 2. =2, and 4. = M, or
equivalently,

N o(e(x), k(x)) — N (x) = 0, (18)
2:(7(x)) — 2(x) =0, (19)
M(e(x), k(x)) — M (x) = 0. (20)

In the application of Newton’s method for the solution of discrete equations of the beam, we need the
variations of "¢, 2., and .#. with respect to ¢, y, and k. Varying Eqs. (15)—(17) yields

0o 0o
0N = (/A a—DdA>88+ (/Aza_DdA>6K: C1; 0¢ + Cy3 0k, (21)

R

d d
S.M = (AZ£M>58+ (/ﬁ%dA)t‘m: Cy 8¢ + Cy3 0. (23)
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Functions Cy;(x), Ci3(x) = Cs31(x), C33(x), and Cy(x) = G(x)4, are the components of the tangent consti-
tutive matrix of the cross-section, C(x). They depend on the distribution of the tangent material moduli over
the cross-section, and on its geometrical shape. For stable materials, C has to be positive definite for any x,
i.e., its principal minors must be positive:

C]] > 0, C]1C22 > 07 detC = sz(C]1C33 — Cé) > 0. (24)

As soon as one of the conditions (24) is violated, the material instability takes place in the cross-section.
Materials, which do not fulfil the conditions in Eq. (24), are unstable materials. Concrete, when strained in
the strain-softening regime, is unstable material.

2.4. Principle of virtual work

The principle of virtual work states that the difference of virtual work of the internal and the external
forces is zero (e.g. Reissner, 1972; Saje, 1990)

L L 6
/ (N Oe+ 28y + MKk)dx — / (pxOu + pz dw + my d¢)dx — E S; du; = 0. (25)
0 0 -

i=1

In Eq. (25) du, dw, and 8¢ denote virtual displacements and rotation, ¢, &y, and dk are virtual strains, and
du; (i=1,2,...,6) are virtual boundary displacements and rotations at end points of the beam:

duy = du(0), duy; = dw(0), OSuz =08¢p(0), JSuy=0u(L), OSus=0w(L), dus=20d¢p(L).

S; (i=1,2,...,6) are their work-complementary generalized boundary external loads.

3. Finite element approximation and solution procedure
3.1. Modified principle of virtual work

We assume that Eqs. (18)-(20) are identically satisfied. Then A", 2, and .# can be replaced by A", 2.,
and .. and the principle of virtual work expressed in Eq. (25) takes the form

L L 6
/ (</V66£—|—:2c6y—|—fﬂc&c)dx—/ (px Su —|—p26w+my8(p)dx—ZS;5u,- =0. (26)
0 0 i=1

The principle of virtual work assumes that the deformation and kinematic variables identically satisfy the
kinematic equations (4)—(6). This means that only three out of six variables, u, w, ¢, ¢, 7y, and «, are
independent. Often the three of them (u,w, @) are taken as independent. Then the functional in (26) be-
comes the function of three independent functions, u, w, and ¢. Such formulations are used, among others,
by Bathe (1996), Crisfield (1991), or Stolarski and Belytschko (1983). These formulations are prone to
locking unless the reduced numerical integration is used. In the present paper, we follow a different
approach by introducing a modified principle of virtual work, and derive finite elements in which the
extensional strain, &(x), and the bending strain, x(x), are the only independent functions.

The principle of virtual work (26) is considered as the constrained variational principle in which the
kinematic equations (4)—(6) play the role of constraints. According to the constrained minimization
methodology, we introduce three Lagrangian multipliers #,(x), %,(x), and .#(x), by which the con-
straining equations are multiplied and then integrated over the domain [0, L]. The resulting equations are
varied with respect to now independent functions u, w, @, &, y, k, #1, #», and /4. Integrals fOL R 0u'dx,
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fOL Rrow'dx and fOL M o@'dx are integrated by parts. The equations thus derived are added to the principle
(26). After rearranging terms we obtain an extended principle of virtual work:

L L
/(MQ—Aﬂ&+{&—2ﬁh+@%fnﬂﬁ@dw—/(@X+%DM—Q&+%D&V
0 0
L
—(Eﬂ/—(l+s),@+))/1/+my)8(p)dx+/ (1+u —(1+¢)cosp —ysing)d%, dx
0

L L
+/ (w’—i—(l+8)sin(p—ycos<p)69?2dx+/ (¢ — Kk)d.M dx — (S| + %:(0)) duy
0 0

- (S2 + e@2(0))6“2 - (S3 + %(0))6”3 — (S4 — %1(]4))8144 — (S5 — %Q(L))Sus — (S6 — ﬂ(l‘))&/% =0.
(27)

In Eq. (27) the variations d¢, 6y, ok, du, dw, d¢, 0%, 6%,, and 8.4 are arbitrary independent functions,
while the variations du; = du(0), duy = dw(0), dus = d3¢(0), duy = du(L), dus = dw(L), and dus = d¢ (L) are
arbitrary independent parameters. In accordance with the fundamental lemma of the calculus of variations,
the coefficients at the independent variations should be zero, which gives the Euler—Lagrange equations of
the principle. They are the constitutive equations (18)—(20), the kinematic equations (4)—(6), and the
equilibrium equations (8)—(10). The related natural (or static) and essential (or kinematic) boundary
conditions are:

S +2(0)=0 or u(0)=u, (28)
S+ 2,(0) =0 or w(0)=u, (29)
Sy+.4(0)=0 or ¢(0)=us, (30)
Si—R(L)=0 or u(L)=us, (31)
Ss— R(L) =0 or w(L)=us, (32)
Se— M(L)=0 or (L)=u. (33)

For a given loading factor, 4, the Euler-Lagrange equations constitute a system of nine non-linear
algebraic—differential equations for nine unknown functions &(x), y(x), x(x), u(x), w(x), ¢(x), Z,(x), Z2(x),
and . (x), subject to the set of boundary conditions (28)-(33). In order to minimize the number
of unknown functions in our final variational principle, some of these equations are integrated sepa-
rately.

The integration of Eqgs. (4)—(6) yields

u(x) :u(O)—i—/OX((l +eé)cosp + ysing)dé —x, (34)
Ww(x) = w(0) — /Ox((1 &) sin @ — ycos @) d, (35)

o(x) = p(0) + / " de. (36)
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It is clear from these equations that while #(0), w(0), »(0) can be arbitrary, parameters u(L), w(L), ¢(L)
cannot meet arbitrary boundary conditions at x = L, unless &(x), y(x), and x(x) explicitly satisfy the con-
ditions

u(L) = u(0) +/L((1 +¢)cosp + ysing)dx — L, (37)
w(L) = w(0) — /0 ((14¢)sin¢p — ycos ¢)dx, (38)
(L) = ¢(0) +/0 Kdx. (39)

The integration of Egs. (8)—(10) gives

R (x) = %, (0) — /0 Xdef, (40)
I (x) = 7(0) — /Oxpzdéi (41)
() = 2(0) + /0 (14 8)2 =y — my)de. (42)

Similarly, it is clear that while %,(0), %#,(0), and .#(0) can fulfil any natural boundary conditions at x = 0,
multipliers %, (L), #,(L), and .# (L) cannot, because they depend on the given deformation variables ¢(x),
p(x), and k(x). Therefore, in order to meet the prescribed natural boundary conditions at x = L, we must
explicitly require that

(L) = ,(0) - / prdx, (43)
(L) = As(0) — /0 pydr, (44)
(L) = M(0) + / (14602 — 9 — my)dx. (45)

Eqgs. (34)—(36) and (40)—(42) make it possible for the kinematic and static variables to be expressed with the
deformation variables. When these relations are inserted into the extended principle of virtual work, Eq.
(27), the terms multiplied by du, éw, d¢, 6%, 0#,, and d.# vanish. Once Egs. (43)—(45) are considered in
the principle (27), Egs. (37)-(39) added and the terms rearranged, we obtain the principle which depends
solely on the deformation functions, &(x), y(x), x(x).

This principle is further modified by eliminating y with the help of Eq. (19). If 82./0y = G4; # 0, the
linear equation (19) can uniquely be solved for y, yielding

_.% sin(p+.%cos<p_ 2

7 =7k, 21(0), :(0), 0(0)) G4 o

(46)
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After y is inserted in the principle, the modified principle of virtual work takes the final form

81" (£(x), K(x), 21(0), 22(0), . 4/(0),u(0),w(0), p(0), u(L), w(L). 9(L))

/OL((/V'CJV)SSwL(/%C/%)SK)dx [ (L)u(O)/OL ((1+8)Cosq)

0,

+ Gis sin q))dx + L} 3%, (0) + [w(L) —w(0) + /OL ((1 +¢)sing — G:245 cos go) dx] 3%,(0)

o0 000) — [ w500+ (51 (0800 (5:-+ 98:00) s — (51 + 10

(S — B (L)) Sua — (S5 — Ro(L)) Sus — (S5 — M (L)) Sug = 0. (47)

Note that the only unknown functions in the principle are the extensional and bending strains, &(x) and
k(x). The remaining unknowns, displacements u(x), w(x) and rotation ¢(x) as well as Lagrangian multi-
pliers %,(x), R,(x), .#(x) are determined from Eqs. (34)—(36) and (40)—(42). This is the reason why they
appear in the functional only through their boundary values.

3.2. Finite element formulation

The Galerkin type of the finite element numerical solution is employed. The extensional strain and the
bending strain are approximated by a standard polynomial interpolation

o) = 3 Pl k@) =3 Pul)s, (48)

where P,.(x) (n =1,2,...,N,) are Lagrangian polynomials of order N, — 1, and P,.(x) (n =1,2,...,N,) are
Lagrangian polynomials of order N, — 1. The interpolation points are equidistant. ¢, and «, are the nodal
values of extensional and bending strains, respectively. The variation of Eq. (48) gives

N, Ny
Se(x) = D Pu(x) e, Sr(x) = Y Pu(x) S,y (49)
n=1 n=1
Inserting (48) and (49) into (47) and setting the coefficients of the independent nodal variations g,

n=12,...,N,), 0k, (n=1,2,...,N,), 0%,(0), %,(0), 6.#(0), du; (i =1,2,...,6) to zero results in the
system of discrete equations of the beam finite element:

L
g,,sz/ (Ne— N)Pdx=0, n=12...,N,, (50)
0
L
ng:/ (%C_%)PnlCdx:O7 n:NS+17N€+27""NS+NK’ (51)
0
L N, Q
an v = u(L) — u(0) —/0 <<1 + ;P,,ga”) cos ¢ + GAL sin (p)dx+L =0, (52)

L N,
an vz = w(L) —w(0) + / ((1 + ZP,,@,) sin¢p —
0

n=1

2
GAL cos q)) dx =0, (53)
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Ny L
g =olL) = 0(0) = Y [ Putdrr, =0, (54)
n=1 0
NN 14 = S1 + Z,1(0) = 0, (55)
ENNe+s = Sa 4+ %2(0) = 0, (56)
gN, N6 = 53 + ﬂ(O) =0, (57)
L
Grr =S = (0)+ [ pede=0, (58)
0
L
NNt = S5 — A2(0) + / pzdx =0, (59)
0

L
NNt = Se — A (0) — /
0

((l + j:Pnssn> - G/ZS>Q - mY] dx =0. (60)

For a given loading factor, A, Egs. (50)—(60) constitute a system of N, + N, + 9 algebraic equa-
tions g(x,1) =0 for N, + N, + 9 unknowns, where x is the vector of unknowns. There are N, + N, + 3
internal degrees of freedom: ¢, (n=1,2,....N,), k, m=1,2,...,N,), %#(0), #,(0), #(0), and six
external degrees of freedom: u(0), w(0), ¢(0), u(L), w(L), (L) of the finite element. Unknown func-
tions % (x), #,(x), M (x), ¢(x), A (x), 2(x), needed in Eqgs. (50)—(60), are determined from Eqs. (40)—(42),
(36), (11) and (12). Integrals in Egs. (36), (40) and (41) and are evaluated analytically, while the
integrals in (42), (50), (51), (52), (53) and (60) are evaluated numerically by Lobatto’s integration (for
the discussion on the choice of the numerical integration, see Planinc et al., 2001, and Saje et al.,
1997).

The system of Egs. (50)—(60) is solved by Newton’s method. After linearizing the equations, eliminating
internal degrees of freedom, and assembling the tangent stiffness matrices of finite elements in the global
coordinate system, we obtain the linear system of equations of the structure

VieG(x;, 2)0xi1 = —G(x;,2),  Xip1 = X; + 0xiy1, (61)

which is repeatedly solved for dx;,; (i = 0, 1,2,...) until the required accuracy is achieved. x; is the vector of
the external nodal unknowns at iteration i, G(x;, 2) = R(x;) — AP is the vector of the residual nodal forces,
R is the vector of internal forces and AP the vector of external forces, and V,G = Ky is the Fréchet
derivative of G, called the structural tangent stiffness matrix.

The Crisfield arc-length method in the combination with Newton’s method was used during the

softening phase of the response of the reinforced concrete frame, see Crisfield (1981) and Feng et al.
(1996).

4. Constitutive laws of concrete and reinforcing steel

Two different constitutive laws of concrete are employed in our numerical experiments: (i) the
Eurocode 2 law (1999) (henceforth referenced as the ‘EC 2 model’), and (ii) the Desayi and Krishnan law
(1964) (referred to as the ‘DK model’). The reinforcing steel is modelled by the three-linear constitutive
law.
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The EC 2 stress—strain law of concrete is given by the relation

0, D < Dg,,
fn — 1y Do <D0 (62)
Oc D = cm Y | 1 A~ cu X x Y
(D) - 1+kn—2n
0, D > 0.
Here, D is extensional strain (in %o), 1 = o ,and k = —1. lEcmD fem 18 the strength of concrete in com-

pression (in MPa); D is the strain at peak stress (in %o); Dy 1s the ultimate strain at compression; Ey, is the
secant modulus of elasticity of concrete (in GPa), and E. ,om 1S the nominal tangent modulus of elasticity of
concrete (Fig. 2). The EC 2 model disregards the bearing capacity of concrete in tension.

The constitutive law of concrete according to the DK model reads

0, D < Dy,
Ecog 2 Dcu < D <Dctl7
1+ (o)
o.(D) = D¢y (63)
Dctl < D < Dtha
DCtZ - D f/
Dc12 - Dcll o
07 D> Dmax-
Here Dy = 0.55D; D> = Diax; and Egq = — 2’% is the initial tangent elastic modulus of concrete.

Although the DK model accounts for the beariﬁg capacity of concrete in tension (‘tension stiffening’),
we assume that the tension part of the constitutive law follows the proposal by Bergan and Holand (1979).
We take f, = 0.55f (fo is the strength of concrete in tension) and D, =~ 0.7%0 (Fig. 2). Note that the
ultimate strain at compression, D, depends considerably on stirrups (Desayi and Krishnan, 1964).

The two constitutive models are jointly displayed in Fig. 2. Observe that both models take into account
the softening of concrete in compression. The unloading is considered to be elastic in both models (Fig. 2).
An initial yield stress at compression is 0.4fy.

The behaviour of reinforcing steel in tension and compression is modelled by the three-linear law:

E,D, |D| < Dy,
(fy + Ep(|ID| = Dy1)) sgn(D), Dy < |D|< Dy,
as(D) = ID| — Dy (64)
(fy + Ep(Dy2 _Dyl))<1 _D4Dy sgn(D), Dy> < [D|< Dy,
yu — y2
0, |D| > Dy,.
(@) (b)
0. (<0) o, (<0)
Jem 7{ fem 7{
// | //
|
04 fcm N Ec.nom i 04 fcm B Ec,non :
i D (< 0) Dmax Dcr i D (< 0)
0 Dcl Dcu - i 0-55fct Dcl 55\5‘/ Dcu -

fct !
Fig. 2. Constitutive laws of concrete according to (a) Eurocode 2 (1999) and (b) Desayi and Krishnan (1964).
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Fig. 3. Constitutive law of reinforcing steel.

E is the elastic modulus of steel; £, is its hardening modulus in the plastic region; fy is the yield stress; Dy is
the related strain; Dy, is the strain at the peak stress; and Dy, is the ultimate strain in steel (Fig. 3). The
isotropic-type of hardening is assumed.

Constitutive models are crucial in the computation of the cross-sectional constitutive forces (/4. and
M., see Eqgs. (15) and (17)), and the components of the tangent constitutive matrix of the cross-section.
These quantities are obtained by the integration over the cross-section, which consists of concrete and steel.
For the integration over concrete parts of the cross-section, the individual part is divided into /. trape-
zoidal layers (Fig. 4). The contribution of each layer is obtained by the Gaussian integration. The con-
tribution of the reinforcement is taken point-wise. We assume a complete extensional strain conformity
between concrete and steel. The constitutive axial force at the cross-section is obtained from the relation

1max kmﬂx
Ne=Neet Nes = by / ocdz+ > o(D})4L. (65)
1=1 Az k=1

Here, as previously, index “c” denotes the contribution of concrete, and index ““s” that of steel. Likewise,
the constitutive moment is determined from the relation

Imﬂx Kmax
M= Mo+ Mes = Zbl / o.zdz + Z a, (D)2 4k (66)
=1 Az

k=1

AF is the cross-sectional area of the kth reinforcing bar, and z¢ is the z-coordinate of its centroid.

A><* Ak strains stresses
() S . ]'

: / Df=g 42tk N =0, (D) AL
e =ik -
T, ) :
Y /\\\ C/ Azl
layer [ kJ >
by
v

Fig. 4. Typical cross-section.



S. Bratina et al. | International Journal of Solids and Structures 41 (2004) 7181-7207 7193

5. Numerical examples

We show three numerical examples and make comparisons of the results with the tests reported in lit-
erature (Espion, 1993; Ferguson and Breen, 1966; Cranston, 1965).

The polynomials with equal degree are chosen for the interpolation of the extensional and bending
strains, i.e. N = N, = N,.. A finite element with Nth degree polynomial, and M-point numerical integration
along the axis of an element, is denoted by Ey_,,. Lobatto’s integration is employed for the integration with
respect to x, and Gaussian integration over the cross-sections.

5.1. Foure’s column

Our first example is Foure’s column (see Fig. 5). This reinforced concrete column was chosen by the
RILEM Technical Committee TC 114 as one of the bench-mark problems for testing the computational
models and computer programmes for reinforced concrete structures. The column was subjected to an
eccentric, slowly increasing axial force until the collapse took place. The results of the laboratory test were
documented by Espion (1993). The geometric, material, and loading data of the column are given in Fig. 5.

Only three material parameters are given by Espion (1993): the compressive strength of concrete, fon,
elastic modulus of concrete, E.,, and strength of steel, f;. The remaining material parameters needed for
our analysis are estimated on the basis of given strength and EC 2. They are: the peak and ultimate
compression strains of concrete, D,y = —2.3%o and D, = —3.5%c; the elastic modulus of steel, E; = 20 000
kN/cm?; the hardening modulus of steel, £, = 0 kN/cm? (no strain-hardening), and its ultimate strains
Dy, = Dy, = 20%o (no strain-softening). The EC 2 material model of concrete is employed.

The measured ultimate critical load was P =454 kN, and the related free-end lateral deflection
wt . =2.61 cm (Espion, 1993). The collapse of the column took place at load P' =445 kN and

cr,test co
deflection w7, ., = 3.21 cm. The graphs in Fig. 6 show the comparisons between the test and the calculated
values for the free-end lateral deflection, w*, as a function of load P. As clearly observed, the present result
and the result of the test agree well. The load—deflection curve was obtained by Crisfield’s arc-length
method with the initial arc-length As = 0.25. The results shown in Fig. 6 were obtained by the use of only
two E4 s finite elements. Such a coarse mesh is sufficient, as will be shown later. Five layers were used for
the integration over the concrete cross-section, and 10-point Gaussian integration within each of the layers.
The ultimate critical load is characterized by the zero determinant of the tangent stiffness matrix of the

structure. The bisection was employed to determine the root of the determinant.

+

P=\P ¢e =1.5cm Cross-section:
15cm
wre— m K A—AF
|
| T e
! 20 cm
I LJ z
| 225m Jé 5 em
x /t\ Yy ;E
1.7 Ay =A% =226 cm?
1 fom = 3.83 kN/cm?
7.7 2
' Eem = 3360 kN/cm
P=1kN fy =46.5 kN/em®

Fig. 5. Foure’s column. Geometric, material, and loading data.
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Fig. 6. Foure’s column. Loading factor vs. lateral deflection curve. The comparison between the test and the numerical results.

The calculated ultimate critical load, P& = 447 kN, is only 7 kN smaller than the measured one (see
point 4 in Fig. 6). The related calculated tip deflection, w}, ., = 2.51 cm, differs from the measured one by
only 0.1 cm. The corresponding maximum compression strain in concrete at the clamped end of the column
is D. = —1.32%o0 and the related longitudinal stress is 6, = —3.18 kN/cm?; the maximum strain and stress in
steel are also compressive (D; = —1.08%o0 and 6, = —21.61 kN/cm?). Once the ultimate load is reached, the
load—deflection curve starts decreasing. The calculation shows, that at P = 360 kN and w; = 5.83 cm (B
marks the point in the load-deflection curve in Fig. 6) the maximum compressive strain in concrete
amounts to D, = —2.26%o, while the related stress is o, = —3.82 kN/cm?. The fact that |D.| < D¢ = 2.3%o
indicates that concrete is still in the hardening regime. The most strained steel bar at the clamped end is now
in tension, Dy = 1.86%o (a; = 37.21 kN/cm?). As the yield strain of steel is Dy; = f,/E; = 2.325%0 > 1.86%o,
it is clear that steel has behaved elastically up to this moment.

Shortly after point B in Fig. 6 is reached, at P = 297 kN, w* = 7.71 cm, the tangent stiffness matrix of the
column becomes singular again. Unfortunately, this critical point does not coincide with the physical
collapse of the column measured in the experiment—it took place a lot earlier, see Fig. 6 (Espion, 1993).

The calculations that use the DK model and employ the same material parameters as EC 2, give virtually
identical results compared to the EC 2 model. Therefore, for the present problem, the two models are
equivalent. Fig. 6 also shows the load—deflection curve of Carol and Murcia (1989), who used Sargin’s
model of concrete and the bi-linear elastic—plastic model for the reinforcement. They employed the 2nd
order beam theory to capture geometrical non-linearity. Their estimate of the critical load is fairly good,
whereas their estimate of the critical deflection is not.

It is instructive to study the effect of the number of elements, the degree of interpolation, and the order of
Lobatto’s integration on the accuracy of the critical load. The results are presented in Fig. 7. They are
compared to the highly accurate solution obtained by employing 16 elements Es o, and marked by P 6.
Fig. 7a shows the effect of the number of elements. We see that the increase in the number of elements is
followed by a substantial decrease in the error. Fig. 7b shows the effect of the integration order when using
one-clement mesh to model the column. This time the increase in the integration order does not uncon-
ditionally mean the decrease in the error (see Planinc et al., 2001, for the discussion). Please notice that one-
element solution is already very accurate: for one element E3_4, the relative error is AP, = 0.11%; for one
element Ey4_s, it is only 0.009%.

5.2. Square frame

Our second example is a square frame, tested by Ferguson and Breen (1966) as frame L;. The results of
the test were presented by Gunnin et al. (1977). The geometry of cross-sections of columns and beams of the
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Fig. 7. Foure’s column. The error of P vs. (a) number of finite elements, (b) order of numerical integration; AP,, = sor — Tenlby

Pcl:](;

frame along with material data for concrete and steel (fom, fy, Es) as offered by Gunnin et al. (1977) are
displayed in Fig. 8. The remaining material parameters needed for our analysis but not stated in Gunnin
et al. (1977) are estimated on the basis of the given strengths of concrete and steel, and EC 2. They are:
elastic modulus of concrete, E., = 2800 kN/cm?; peak and ultimate compression strains of concrete,
D¢y = —1.85%0 and D, = —3.5%o0; hardening modulus of steel, £, =0 kN/cm? (no strain-hardening), and
its ultimate strains Dy, = Dy, = 20%o0 (no strain-softening). The frame was tested in the laboratory under
slowly increasing vertical and horizontal forces until the frame collapsed.

The load-horizontal displacement curve was determined by Crisfield’s arc-length method. The initial
arc-length was As = 0.75. The results in Fig. 9 were obtained by the mesh consisting of four £, s finite
elements, i.e., each column or beam was modelled by one element. Five layers were used for the integration

over the concrete cross-section, and 10-point Gaussian integration within each of them. The EC 2 model
was employed along with the no-tension assumption of concrete.

Cross-section of column:

, 154 cm
P+H P-H z
¥ Y — v, —>. A=Al =1.52 cm?
vz 20 £, =38.89 kN/cm®
% E,=20200 kN/cm?
2.13m = 0.01
€ . Cross-section of beam:
= 15.4 cm
¥ 7 7
2 Vrverd 8.1 CmI Y LTC 2.4
A —213m—F ;%
z
P=\P, P=1kN A,=A.=50cm?
fem =2.21 kKN/cm? fy =40.34 kN/cm?

E,=20200 kN/cm’

Fig. 8. Square frame of Ferguson and Breen (1966). Geometric, material, and loading data.
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Fig. 9. Square frame. Load vs. horizontal deflection curve.

The ultimate critical load measured in the test was P = 141 kN, and the corresponding horizontal
displacement was u, ., = 6.11 cm. The calculated critical load (point 4 in Fig. 9) agrees well with the
measured one, and is Peile = 136.4 kN. The related horizontal displacement of the point of application of
force 2H is ug, ., = 5.21 cm. Fig. 9 shows the comparisons for the horizontal displacement, u*, as a function
of load P. As we can see, the results agree nicely. The numerical solution of Gunnin et al. (1977) is also
displayed. Their solution is rather imprecise, which may be due to an insufficiently accurate modelling of
the geometric non-linearity by the ‘P-A method’.

An equal maximum compression strain in concrete at the ultimate critical load appears in two cross-
sections, both in the right end of the beams: in the lower beam, at its upper side, and in the upper beam, at
its lower side of the cross-section. The maximum compression strain is D, = —1.73%o0. The extensional
strain in steel reinforcing bars is also maximal at these cross-sections (D5 = 1.25%o).

Once the ultimate critical load is reached, the load-horizontal displacement curve starts decreasing. At
the load Pz = 126.8 kN and the horizontal displacement uj; = 9.04 cm (marked by point B on the load—
displacement curve in Fig. 9), the maximum compressive strain in concrete becomes as high as
D. = —3.01%o, which indicates the softening of concrete; by contrast, the most strained steel bar which
remains in tension (D; = 1.89%0) behaves elastically.

A detailed study of errors in the horizontal displacement, u*, and the constitutive moment at the tip of
the right-hand column, ./, is now made as a function of the type and number of finite elements. The errors
at load P = 130 kN, which is roughly 95% of the ultimate critical load, are presented. The comparisons are
shown in Fig. 10a and b, where various results are compared to those obtained with 32 elements Eg_o, i.e. 8

2.0 2.0 T T :

-0 Fgy
15t 15t - By
52 O:O - Eug
*;3 1.0 4 *zu 1.0 + —O— E2_3
4 p o By

4
0.5 0.5
0 B—p—— 0 = —
32
(a) number of elements (b) number of elements

Fig. 10. Square frame. The accuracy of results as a function of number and type of finite elements at load P = 130 kN. (a) Horizontal
/Zi B j/z,zz
M

.
)
;
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displacement, Au* = ; (b) constitutive moment at the top of the right-hand column, A.Z;; =
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very accurate elements per column or beam. These results are denoted by u3, and .#_ 5,. As observed from
the graphs, the relative errors are small even if only four elements £, s are used; e.g. the relative error in the
horizontal displacement is about 1%, and the error in the constitutive moment is about 0.5%. Note that the
order of numerical integration greater than N + 1 somewhat improves the results for displacements, but
makes the results for constitutive moments substantially worse (see Fig. 10b); e.g. employing four elements
E,_s makes the error in A.#; to be 0.57% in contrast to 2.33% when four elements E4 o are used. This
interesting result is in agreement with the discussion by Planinc et al. (2001) for elastic—plastic material.

In design the accuracy of stresses is of great importance. The stresses are determined from the axial and
shear forces and the bending moment. In numerical solutions, there are two kinds of forces and moments,
i.e. the equilibrium and the constitutive ones (see Section 2). The smaller the difference between the two
types of forces, the more accurate the solution; hence, the differences |4 — 47| and |.#. — .#| are the
indicators of the accuracy of the solution. Fig. 11 shows the graphs of |.#. — .#| for the right-hand column
of the frame at P = 130 kN for cases where one, two, three, and four finite elements per column or beam are
applied. The results of two different-order elements, E4 s and E, ¢, are displayed. The positions of the
Lobatto integration points are shown by circles (O). For element E,_s, where the number of interpolation
points coincides with the order of Lobatto’s integration, the two moments coincide at the integration
points. Otherwise this is not the case (see the results of element £, o); however, the peak and the overall
errors now appear to be much smaller. Observe that the error diminishes exponentially with the growth of
the number of elements (see Fig. 11a—d).

The results show that very reliable values for the bending moment are obtained at integration points if
the number of interpolation points coincides with the order of Lobatto’s integration. For example, the

(a) (b)

4.0 T T T 4.0 r T :
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_ 30t — By | _ 30t — By
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Fig. 11. Square frame. The graph of A.#Z =

vs. x/L for the right-hand column (P = 130 kN): (a) one element, (b) two

M max

elements, (c) three elements, (d) four elements.
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largest bending moment at the top of the right-hand column is .# ,,,x = 356.09 and 358.15 kN cm for one
and four-element meshes, respectively, the difference being only about 0.6%. Similar conclusions are valid
for the axial forces. Note that substantially larger errors would be obtained with classical finite elements if
the consistency conditions (18)—(20) were not applied.

5.3. Cranston’s portal frame

A two-hinge pinned reinforced concrete frame, tested by Cranston (1965) as frame P, and analysed by
Lazaro and Richards (1973) and Bazant et al. (1987a), is studied in this section. The behaviour of
Cranston’s frame P; is characterized by a massive strain-softening of concrete, which triggers localizations
of deformations and an overall softening of the structure. A special approach is needed to model the strain-
softening of material numerically. In this paper we assume that the localization of deformation takes place
in a small, yet a finite-length region of the beam, AL, and determine its length from the fracture energy of
concrete in compression, Gf, as described in Coleman and Spacone (2001). This approach is often called the
local continuum approach.

The descriptive data are displayed in Fig. 12. Only two material parameters are given in Cranston (1965),
ie. fom and fy. For the remaining parameters, we made estimates using the given strengths and EC 2:
Eem = 3150 kN/em?; Dy = —2.3%0; E5 = 20,000 kN/cm?; E, = 200 kN/cm?; Dy, = 10%0 and Dy, = 300%o.

P=\P
¢ ¢ . Cross-section Cross-section
— ] —tp atT,,T,,T,: at T, Ts:
vz w*
1_097%1_09 10.16 cm
0.46
1.93 m 1.4;{? —
z x
z p P
<- -’ Y Tell 1524 Y Te
4
; 7 1.4;|é 7L ae
H——264m——F Z Z
_ 2 _ 2
P=1kN A’S—1.43 cm2 A'S 2.85 cm2
fcm =3.65 kN/CIIl2 AS =2.85cm As =1.43 cm
fy =29.3 kN/cm?
(a) P (b) P
e e
Tl,.,.. ........... [, _H..H.,_.+T2 TI,.,_ ........... | 2 =

FH—55cm—F

Reinforcement amount:

= A,=143cm’

— A =285 cm’

Fig. 12. Cranston’s portal frame. Geometrical, material, and loading data. (a) Original position of reinforcement (Case 1); (b)
alternative position of reinforcement (Case 2).
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The same parameters were taken for the DK model. The DK model needs two additional parameters to
consider the tension-stiffening, i.e. Dy = D, = 0.055%0 and Dy = 0.7%o. Similar, but not equal param-
eters were assumed by Lazaro and Richards (1973) and Bazant et al. (1987a). We assumed that the fracture
energy of concrete in compression is Gf = 20 N/mm (Jansen and Shah, 1997), and the ultimate fracture
strain in compression D, = —50%o. As a result, the length of the localization zone of concrete is AL, = 4
cm (Coleman and Spacone, 2001).

The initial arc-length in Crisfield’s arc-length method was As = 0.5. The results in Fig. 13 were obtained
by the use of 8 finite elements £, s and 13 short constant-strain elements Ey_; of length AL, = 4 cm. The
finite-element mesh was designed in such a way that short elements could capture the localization of
deformations. Thus, the beam was modelled by (in the following order from left to right): one short element
Ey_, at the left node of the beam (length: 4 cm), two elements £, s (lengths: 51 cm and 55 cm), 11 short
elements between the applied forces, two elements E4 s and one short element. The columns were divided
into two elements £4 s each. The finite element mesh is depicted in Fig. 12a. Ten layers were used for the
integration over the concrete cross-sections, and the 10-point Gaussian integration was employed within
each of them. For the sake of comparison with other numerical studies (Bazant et al., 1987a, and Lazaro
and Richards, 1973), only one half of the frame was analysed assuming its symmetry.

Fig. 13 shows graphs of the vertical deflection, w*, at mid-point 75 as a function of the load, P. The
results are compared to those obtained by Cranston (1965). A good overall agreement between the two
results may be observed. The numerical results by Bazant et al. (1987a) and Lazaro and Richards (1973) are
also displayed (note that their solutions employed the geometrically linear theory).

The form of the load—deflection curve is roughly three-linear. Up to point 4, the frame behaves virtually
elastically. From 4 to B, some of the cross-sections have partly plastified, which results in a decreased
stiffness of the frame. At B the determinant of the tangent stiffness matrix of the frame becomes zero
(det Kt = 0). The analysis of the matrix eigenvectors shows that the limit load of the frame and not its
bifurcation point is reached. Simultaneously, the determinant of the tangent constitutive matrix of the
beam cross-section at point 7} (and also at point 7}) becomes zero (det C = 0, see Fig. 14b), which indicates
that the ultimate bearing capacity of both, the cross-section and the frame, is reached. In the subsequent
deformation, the frame exhibits a softening behaviour, both globally and locally at point 77. At point C of
the load—-displacement curve, the ultimate bearing capacity is simultaneously reached at all cross-sections
between the forces (point 7, will represent these points), see the curve marked by det C in Fig. 14d. These
cross-sections soften afterwards.

As already stated, at the ultimate critical load, P, = 21.10 kN, both, the determinant of the tangent
stiffness matrix of the frame, and the determinant of the tangent constitutive matrix of the beam cross-

section at 7} become zero. The related largest compression strain in concrete at 7} is D, = —2.44%0 which
25 : : : : :
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Fig. 13. Cranston’s portal frame. Load-mid-point deflection curves.
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Fig. 14. Cranston’s portal frame. Graphs of A", .4, Cy;, and det C, as functions of arc-length s. (a)—(b) At the left-end cross-section of
the beam, point 77, (c)—(d) at the mid-point cross-section of the beam, point 75.

indicates that some of the fibres in concrete have entered the softening regime before the det C becomes
zero. The same holds for the steel bars, where the tensile strain Dy = 11.32%o is greater than Dy, = 10%o,
where the steel starts softening. The related bending moment is .# = —1165 kN c¢cm, which is only a little
less than the value obtained by Cranston (1965) on the basis of the measured strain distributions
(A cranston = —1247 kN cm) (see Fig. 15a). These quantities at the mid-point cross-section, point 75, are: the
maximal compression strain in concrete is D, = —1.96%o, the tension strain in steel is Dy = 7.75%o, and
the bending moment is .# = 1147 kN cm (Fig. 15b). Fig. 14c—d show that the cross-section is still in the
hardening regime. The deflection at the mid-point 75 is w}, = 2.34 cm.
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Fig. 15. Cranston’s portal frame. Bending moments. (a) At the left-end cross-section of the beam, point 7j, (b) at the mid-point cross-
section of the beam, point 75.
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Point C marks the state of the frame where the cross-section 7, starts softening. The related force and
mid-point deflection are P = 20.41 kN and wc = 2.97 cm. The maximal compression strain in concrete at
Ty is D. = —5.03%o, while the tension strain in steel bars is Dy = 33.31%o, which is roughly three times larger
than at the ultimate load, although it is still much smaller than the assumed ultimate strain Dy, = 300%o.
Consequently, the constitutive moment at this cross-section has decreased and amounts to .# = —1076
kNcm (Fig. 15a). The decrease of the moment again indicates the softening of the cross-section. The
determinant of the tangent constitutive matrix of the cross-section at 7; is negative (see Fig. 14b). The
maximal compression strain in concrete at the mid-point cross-section 7, is D, = —2.32%o. The tension
strain in steel bars has increased to Dy = 10.32%0. The bending moment at the cross-section has also
increased and amounts to .# = 1164 kN cm (Fig. 15b).

The redistribution of stresses in the beam during the softening phase is shown in Fig. 16. Fig. 16a shows
the normal stress distribution at P, = 15.34 kN, and Fig. 16b at P, = 16.49 kN. It is indicated where the
stresses are in the elastic regime (either in loading or unloading from the plastic state), or in the plastic
regime (either in hardening or softening). At load P, the beam material is mostly elastic, and the bearing
mechanism of the beam is a ‘compression arch’. A relatively long region at the upper side of the beam at
its central part is in the plastic regime. Once the global softening develops, the plastic region gets smaller
and smaller due to the localization of deformation. Note also that load P, = 16.49 kN is greater than the
load at 4.

We would like to show that only a minor change in the reinforcement length may cause major changes in
the behaviour of the frame. We keep the material and geometrical data as in the previous analysis, and
change only the length of the bars in the lower part of the cross-section, see Fig. 12b. Bazant et al. (1987a)
assumed this reinforcement layout, yet they took different values of material parameters to model
Cranston’s frame.

We used the finite element mesh with 8 finite elements E4_s and 4 short constant-strain elements E,_; of
length AL, = 4 cm. The mesh is depicted in Fig. 12b. This case will be referred to as ‘Case 2’ to distinguish
it from the previous case, ‘Case 1°.

(a) P,=15.34kN (b) Pp=16.49 kN
| |
s A
———— ==
P SR A wy - A A
11 — = i —
(c) Py=12.62 kN (d) Po=9.46 kN
I
e 23
—!
- L 4 >y 4
= [
Stresses in concrete Stresses in steel
[ no stress === elastic regime
[ compression elastic regime m— plastic regime

Il compression plastic regime

Fig. 16. Cranston’s portal frame. Stresses in the beam. (a) Case 1, load P, = 15.34 kN (point 4); (b) Case 1, load P, = 16.49 kN
(point D); (c) Case 2, load Py = 12.62 kN (point 4'); (d) Case 2, load Po = 9.46 kN (point C').
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Fig. 17. Cranston’s portal frame. The load—displacement curve as a function of the reinforcement layout, Case 1 and Case 2.

The load—displacement curve for Case 2 is shown in Fig. 17 and compared to the results of Cranston’s
test and Case 1. The bearing capacity is now considerably lower. The sequence of the ‘critical events’ is also
very different. This time the cross-section 73 and its symmetric companion 73 (see Fig. 12b) first reach their
ultimate bearing capacities at load Py = 12.62 kN (4’ is the point on the load—displacement curve, see Fig.
17) which is smaller than the ultimate critical load of the frame (Py = 15.52 kN). This is due to the fact, that
the cross-section 73 is insufficiently reinforced to compensate fully the imposed (the equilibrium) bending
moment. During the subsequent deformation, the cross-sections 753 and T3 soften. At point B’ the bearing
capacities of cross-section 7} and its symmetric companion 77, and of the frame are reached simultaneously.
Since then the cross-sections 7j, 7|, 75 and 7, soften. Let us recall that Bazant et al. (1987a) employed the
reinforcement layout of Case 2. Their load—displacement curve is displayed in Fig. 13 and a good agreement
may be observed with Cranston’s. Yet material parameters they employed do not fully agree with those
measured in Cranston’s tests. For example, their yield strength of steel was assumed to be f;, = 40 kN/cm?
instead of f, = 29.3 kN/cm? given by Cranston. Such a change of material data influences the results
substantially and offers possibilities to fit the numerical response curve with the one obtained in the test.

Fig. 16 shows the no-stress, elastic, and plastic regions in concrete and steel for Case 2. The figure again
confirms that a small change in the reinforcement layout causes notably different distributions of stresses in
the frame. This is also true for the deformed shapes of the two frames in the softening phase (Fig. 18). The
differences between the deformed shapes are clearly seen.

Our analyses assumed a complete symmetry of the frame. This was also assumed by Lazaro and
Richards (1973) and Bazant et al. (1987a). In Cranston’s test, however, a large horizontal displacement was
reported and attributed to an initial geometrical imperfection of the frame. Therefore, we also analysed the
frame (see Fig. 20b) with the skew columns, the small imperfection being A = 0.32 cm. To fit the measured

(a) Case 1 (b) Case 2

Pi ¢P | P¢ ¢P
—— load P,
— load P,

—— load Py
— load P

Fig. 18. Cranston’s portal frame. The comparison of deformed shapes in the softening phase (magnified 15x).
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Fig. 19. Cranston’s portal frame with a geometric imperfection. Finite-element mesh.

response, we had to change the following data: Dy, = 11%o (instead of 10%o0 taken previously); Dy, = 1300%0
(300%0); Doy = —100%0 (—50%0); G¢ = 25 N/mm (20 N/mm), while the rest of the material data remains as in
Case 1. The finite-element mesh, consisting of 15 short elements (AL,, = 4 cm) and eight E,_s elements, is
displayed in Fig. 19.

Fig. 20a shows the load—displacement curves of the imperfect frame. The vertical displacement w* at
point 7, and the horizontal displacement u* at point 7; are displayed. The comparison with the results of
the test shows excellent agreement between the computed and experimental results.

(a)
25 T T T T T 20
A=0.32cm
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w* [em]
(b)
A=0.32cm A
-+
| T
| | —— load Pg
: : —— load Pp
: : — load Py
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Fig. 20. Cranston’s portal frame with the geometric imperfection. (a) Load—displacement curves; (b) deformed shapes in softening
regime (15x magnified).
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At point F of the load—displacement curve the frame reaches the ultimate critical load P, = 21.09 kN.
Simultaneously, the cross-section at 7 (see Fig. 19) reaches the ultimate bearing capacity. The related
compressive strain in concrete at the bottom of the cross-section is D, = —2.59%o, and the tension strain in
the steel bar at the top of the cross-section is Dy = 12.36%o. It appears that the ultimate critical load of the
frame is only moderately sensitive to the geometrical imperfection. The vertical displacement is roughly the
same, too: w;, = 2.27 cm compared to 2.34 cm in the perfect frame. The horizontal displacement, however,
is now four times greater: u;, = 0.42 cm compared to 0.11 cm in the perfect frame. The values are in a very
good accord with the measured ones (Fig. 20a).

At Pg = 20.42 kN (the corresponding vertical displacement is w§; = 2.97 cm) the cross-section 75 (see
Fig. 19) starts softening. This compares well with the situation without the imperfection (see point C in Fig.
13), only that now the horizontal displacement of point 75 is u§, = 2.09 cm, which is about 12 times larger
than the displacement of the perfect frame (ug; = 0.17 cm).

The deformed shapes of the frame in the post-critical softening phase are shown in Fig. 20b. Observe
that the displacements in Fig. 20b are 15 times magnified.

In Fig. 21 we display the distributions of the extensional and bending strains along the axis of the frame
for two deformation stages in the softening phase of the frame. The graphs clearly show a very high
localization of deformations at points 7, and 7s. We wish to stress that the inclusion of constant-strain
elements in the finite-element mesh was essential to trigger the localization of deformation. We note that
both strain measures, ¢ and x, have localized. This shows how important it is to consider both strain
measures in the analyses. Many beam formulations (e.g. Bazant et al., 1987a; Jirdsek, 1997) neglect
extensional strain in the strain-softening calculations, which often leads to unsatisfactory results.

(a) (b)

_ -2
Py Py € =0.564>10 Pw ¢ Pr o 4=0.108 10 %cm
m { ; v e
(c) (d)
e =7.030-107 N
Py Py PH¢ ‘PH £ =1.589 <10 %/cm

=

PAN VAN

Fig. 21. Cranston’s portal frame with the geometric imperfection. The distribution of strain measures, ¢ and «, along the axis of the
frame. (a) Extensional strain ¢ at Pg, (b) bending strain x at P, (c) extensional strain ¢ at Py, (d) bending strain x at Py.
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Fig. 22. Cranston’s portal frame. The distributions of normal stress and tangent modulus in concrete at cross-sections 77 and 7> at
P =20 kN.
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Our final remark concerns the numerical integration over the cross-section. Fig. 22 shows the distri-
butions of the normal stress and the tangent modulus in concrete at cross-sections 7; and 7, at
P =0.93P, = 20 kN for the geometrically perfect frame, Case 1. It is clear that the stress and the tangent
modulus are discontinuous functions of z. Because standard Gaussian integration rules require that the
integrated functions are continuous, these methods are not directly applicable in such situations. Fig. 23
shows the convergence graphs for four characteristic quantities of the cross-section 71: A", .4, and C); . in
concrete, and det C. of the concrete part of the cross-section. 1, 3, 5, 10, 20, and 50 layers are used,
respectively, and 10-point Gaussian or Lobatto’s integration within each layer to model the cross-section.
Gaussian integration results in much more accurate results for small number of layers (1 or 3), while for a
bigger number of layers, the two integration methods become comparable. The increase of the number of
layers seems to improve the results. The convergence, however, is relatively slow (see Fig. 23b). This is due
to the discontinuous distribution of stresses and material tangent moduli over the cross-section. A special
numerical integration technique seems to be required to improve the results.

6. Conclusions

The materially and geometrically non-linear analysis of concrete structures is a difficult task. The
analysis tool must be sophisticated enough to capture the phenomena like strain-softening and strain
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localization in concrete with a sufficient precision. In order to construct such a tool, we have derived a new
family of beam finite elements. They are based on Reissner’s planar beam theory and therefore consider
exact geometrical non-linearity. Their novelties are: (i) the extensional and the bending strains are the only
interpolated functions; (ii) the equilibrium and the constitutive internal forces are equal at the integration
points. The members of the finite element family can equally well describe extensible or inextensible beams,
shear stiff or shear deformable beams, and thin or thick beams. The elements are rigid-body displacement
invariant and path-independent for conservative problems. The elements are applied in the analysis of the
reinforced concrete planar frames.

We employed the EC 2 constitutive model of concrete and the model of Desayi and Krishnan (1964).
The strain-hardening as well as the strain-softening of concrete were taken into account, yet, for the
present, the effect of creep and shrinkage in concrete were neglected. The three-linear stress—strain diagram
for the reinforcing steel was assumed along with the isotropic-type of the strain-hardening and softening.
The no-slip contact between concrete and steel was assumed.

The efficiency of our finite element model was proved through the analyses of three realistic frame
structures. All of them were previously tested in the laboratory. The behaviour of the first structure is
characterized by the dominance of the geometric instability, whereas the behaviour of the third structure is
more materially dominant. We directed our analyses into the study of the post-critical behaviour of frames,
in particular into the description of the material softening of cross-sections, the softening of the global
response, and their interaction. The results include the graphs of the strain localizations at cross-sections
and the redistributions of regions of strain-hardening, strain-softening and unloading.

Fundamental to our strain-softening analysis is the introduction of the short constant-strain element in
our new beam finite element family. This enables us to detect automatically the loss of the local stability at
the cross-section and to proceed into the strain-softening regime.
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